
Developing
ColdFusion
Applications
MacroMedia ColdFusion® 5
Macromedia® Incorporated

Copyright Notice

© 1999–2001 Macromedia Incorporated. All rights reserved.

This book, as well as the software described in it, is furnished under license and may
be used or copied only in accordance with the terms of such license. The content of
this manual is furnished for informational use only, is subject to change without
notice, and should not be construed as a commitment by Macromedia, Incorporated.
Macromedia, Incorporated assumes no responsibility or liability for any errors or
inaccuracies that may appear in this book.

Except as permitted by such license, no part of this publication may be reproduced,
stored in a retrieval system, or transmitted in any form or by any means, electronic,
mechanical, recording, or otherwise, without the prior written permission of
Macromedia, Incorporated.

ColdFusion, HomeSite, and Macromedia are registered trademarks of Macromedia
Incorporation in the United States and internationally. Allaire Spectra, the Allaire
Spectra logo, Generator, Macromedia Generation, and JRun are trademarks of
Macromedia, Incorporated. Java is a trademark of Sun Microsystems, Inc. Microsoft,
Windows, Windows NT, Windows 95, Microsoft Access, and FoxPro are registered
trademarks of Microsoft Corporation. PostScript is a trademark of Adobe Systems Inc.
Solaris is a trademark of Sun Microsystems Inc. UNIX is a trademark of The Open
Group. All other company names, brand names, and product names are trademarks
of their respective holder(s).

Part number: ZCF50MDEV

Contents
About This Book . xv
Intended Audience . xvi

New Features . xvi

Developer Resources . xvii

About ColdFusion Documentation . xviii
Printed and online documentation set . xix
Viewing online documentation . xix
Printing ColdFusion documentation . xix

Getting Answers. xx

Contacting Macromedia . xx

Chapter 1 Introduction to ColdFusion 1
A Quick Web Overview . 2

Before You Begin . 3
HTML . 3
Relational database design and management . 3
SQL . 3

What is ColdFusion? . 4
Editions of ColdFusion . 4

ColdFusion Features and Components . 5
About the features . 5
About the components . 6

How ColdFusion Server Works . 8

Chapter 2 Writing Your First ColdFusion Application . 9
The Development Process. 10

Working with ColdFusion Application Pages . 10
About applicaton pages . 10
Creating application pages . 10
Saving application pages . 11
Viewing application pages . 11

iv Contents
Working with Variables . 13
About variables . 13
Adding more variables to the application . 15

Development Considerations. 16

Chapter 3 Querying a Database 17
Publishing Dynamic Data . 18

Understanding Database Basics . 19

Understanding Data Sources . 20
About Open Database Connectivity . 20

Accessing Data Sources . 21
Adding data sources . 22
Specifying data sources dynamically . 24

Retrieving Data . 25
The cfquery tag . 25
The cfquery tag syntax . 25

Writing SQL. 26
Basic SQL syntax elements . 26
SQL notes and considerations . 27

Building Queries . 28
Query notes and considerations . 29

Outputting Query Data . 30
Query output notes and considerations . 31

Getting Information About Query Results . 32
Query properties notes and considerations . 33

Using Query Results in Queries . 34
Query of query benefits . 34
Creating queries of queries . 34
Performing a query on a query . 35

Chapter 4 Retrieving and Formatting Data 39
Using Forms to Specify the Data to Retrieve . 40

form tag syntax . 40
Form controls . 41
Form notes and considerations . 44

Working with Action Pages . 45
Processing form variables on action pages . 45
Dynamically generating SQL statements . 45
Creating action pages . 46
Testing for a variable’s existence . 47
Form variable notes and considerations . 48

Working with Queries and Data . 49

v

Using HTML tables to display query results . 49
Formatting individual data items . 50
Performing pattern matching . 51
Filtering data based on multiple conditions . 51
Creating table joins . 52
Building flexible search interfaces . 52

Returning Results to the User . 55
If there are no query results . 55
Returning results incrementally . 56

Chapter 5 Graphing Data . 59
Creating a Graph . 60

Graph types . 60
Creating a basic graph . 61

Graphing Data . 62
Graphing a query . 62
Graphing individual data points . 65
Combining a query and data points . 66

Controlling Graph Appearance . 67
Common graph characteristics . 67
Setting bar and horizontal bar chart characteristics 68
Setting pie chart characteristics . 71
Setting line and area graph characteristics . 74

Linking Dynamically from Graphs . 77

Chapter 6 Making Variables Dynamic 81
Dynamically Populating List Boxes . 82

Creating Dynamic Check Boxes and Multiple-Selection List Boxes. 84
Check boxes . 84
Multiple selection lists . 86

Ensuring that Variables Exist . 88
Using cfparam to test for variables and set default values 88
Requiring users to enter values in form fields . 89

Validating Data Types. 90
Using cfparam to validate the data type . 90
Validating form field data types . 91
Checking query parameters with cfqueryparam . 94

Dynamic SQL . 96
Implementing dynamic SQL . 96

Chapter 7 Updating Your Database 101
Inserting Data . 102

Creating an HTML insert form . 102
Developing Web Applications with ColdFusion DRAFT 5 / 9 / 0 1 P a t h / F i l e n a m e / A u t h o r

vi Contents
Data entry form notes and considerations . 103
Creating an action page to insert data . 103

Updating Data . 106
Creating an update form . 106
Creating an action page to update data . 109

Deleting Data . 112
Deleting a single record . 112
Deleting multiple records . 113

Chapter 8 Handling Complex Data
with Structures . 115

About Arrays . 116

Basic Array Techniques . 118
Creating an array . 118
Adding elements to an array . 119
Referencing elements in dynamic arrays . 119

Populating Arrays with Data . 121
Populating an array with ArraySet . 121
Populating an array with cfloop . 121
Using nested loops for 2D and 3D arrays . 122
Populating an array from a query . 123

Array Functions . 124

About Structures . 125
Structure notation . 126

Creating and Using Structures . 127
Creating structures . 127
Adding data elements to structures . 127
Updating values in structures . 128
Getting information about structures . 129
Copying structures . 130
Deleting structures . 130
Structure example . 130
Looping through structures . 132

Structure Functions . 133

Chapter 9 Building Dynamic Forms 135
Creating Forms with the cfform Tag . 136

Using HTML and cfform . 136
cfform controls . 137
Preserving input data with preservedata . 137
Browser considerations . 138

Input Validation with cfform Controls . 139
Validating with regular expressions . 140

vii
Input Validation with JavaScript . 144
Handling failed validation . 144
Example: validating an e-mail address . 144

Building Tree Controls with cftree . 147
Grouping output from a query . 148
cftree form variables . 149
Input validation . 149

Structuring Tree Controls . 150
Image names in a cftree . 151

Embedding URLs in a cftree . 152
Specifying the tree item in the URL . 153

Creating Data Grids with cfgrid . 153
Populating a grid from a query . 154

Creating an Updateable Grid . 155
Navigating and entering data in a grid . 155
Controlling cell contents . 156
How user edits are returned . 156
Editing data in cfgrid . 157
Updating the database with cfgridupdate . 159
Updating the database with cfquery . 160

Building Slider Bar Controls . 164

Building Text Entry Boxes . 165

Building Drop-Down List Boxes. 166

Embedding Java Applets . 167
Registering a Java applet . 167
Using cfapplet to embed an applet . 169
Handling form variables from an applet . 169

Chapter 10 Reusing Code . 171
Ways to Reuse Code . 172

Reusing Common Code with cfinclude . 172

Using Custom Tags . 173
Using existing custom tags . 174
Creating custom CFML tags . 174
Variable scopes and special variables . 174
Using tag attributes . 175
Passing values to and from custom tags . 176
Passing custom tag attributes via CFML structures 177
Custom tag example . 178

Nesting Custom Tags . 180

Passing Data Between Nested Custom Tags . 181
What data is accessible? . 181
Developing Web Applications with ColdFusion DRAFT 5 / 9 / 0 1 P a t h / F i l e n a m e / A u t h o r

viii Contents
Where is data accessible? . 181
High-level data exchange . 181

Executing Custom Tags . 185
Tag instance data . 185
Modes of execution . 185
Specifying execution modes . 185
Terminating tag execution . 186
Access to generated content . 187

Installing Custom Tags . 187
Local tags . 187
Shared tags . 187

Managing Custom Tags . 188
Resolving filename conflicts . 188
Securing custom tags . 188
Encoding custom tags . 189

Chapter 11 Preventing and Handling Errors 191
Debug Settings in the ColdFusion Administrator . 192

Generating debug information for an individual page 192
Generating debug information for an individual query 192
Error messages . 192

CFML Code Validation . 194
Runtime validation . 194
The CFML syntax checker . 194

Troubleshooting Common Problems . 195
ODBC data source configuration . 195
HTTP/URL . 195
CFML syntax errors . 195

Error Handling in ColdFusion . 197
Understanding ColdFusion errors . 197

Generating Custom Error Messages with cferror . 199
Creating an error application page . 200

Logging Errors . 202

Handling Exceptions in ColdFusion . 204
Types of recoverable exceptions supported . 205
Exception information in cfcatch . 206
Exception handling strategies . 208
Exception handling example . 208
Custom Exception Types . 210

Chapter 12 Using the Application Framework 213
Understanding the Web Application Framework. 214

Application-level settings and functions . 214

ix
Client, Session, Application, and Server scope variables 214
Custom error handling . 215
Web server security integration . 215

Mapping an Application Framework . 216
Processing Application.cfm and OnRequestEnd.cfm 216
Defining the directory structure . 217

Creating the Application.cfm File . 219
Naming the application . 219
Setting application default variables and constants 219

Managing the Client State . 221
About Client and Session variables . 221
About client cookies . 222
Managing client state in a clustered environment 222
Managing client state without cookies . 222

Configuring and Using Client Variables . 223
Setting up Client variable options . 223
Using Client variables . 224

Using Session Variables . 228
Enabling Session variables . 228
What is a session? . 228
Storing session data in Session variables . 229
Standard Session variables . 229
Getting a list of Session variables . 230

Using Application Variables . 230
Storing application data in Application variables . 230
Application variable timeouts . 231
Tips for using Application variables . 231
Getting a list of Application variables . 231

Using Server Variables . 232

Locking Code with cflock. 233
Using cflock . 233
How cflock works . 233
Using administrative lock management . 236
Nesting locks and avoiding deadlocks . 237

Examples of cflock. 238

Chapter 13 Extending ColdFusion Pages with CFML
Scripting . 243

About CFScript. 244
CFScript example . 244
Supported statements . 244

The CFScript Language . 245
Comments . 245
Developing Web Applications with ColdFusion DRAFT 5 / 9 / 0 1 P a t h / F i l e n a m e / A u t h o r

x Contents
Variables . 245
Expressions . 245
Statements . 245
Reserved words . 248
Differences from JavaScript . 248

Interaction of CFScript with CFML . 249

Defining and Using Custom Functions . 250
Defining functions . 250
Calling functions . 251
Using arguments and variables . 251
Identifying custom functions . 253
Examples of custom functons . 253
Using custom functions effectively . 254

Chapter 14 Using Regular Expressions in Functions
259
About Regular Expressions . 260

Basic Regular Expression Rules . 261
Character classes . 261

Multicharacter Regular Expressions . 263
Limiting input string size . 264
Anchoring a regular expression to a string . 264

Using Backreferences . 265
Using backreferences in replacement strings . 265

Returning Matched Subexpressions . 266

Regular Expression Examples. 267
Regular expressions in CFML . 267

Chapter 15 Indexing and Searching Data 269
Searching a ColdFusion Web Site. 270

Advantages of using Verity . 270

Supported File Types . 271

Support for International Languages . 272

Creating a Searchable Data Source . 273
Creating a Collection . 273
Populating and indexing a collection . 276
Selecting an indexing method . 277
Building a search interface . 279

Indexing Query Results . 282
Indexing database query results . 282
Indexing cfldap query results . 283
Indexing cfpop query results . 284

xi
Using Query Expressions . 285
Simple query expressions . 285
Explicit query expressions . 286
Expression syntax . 286
Composing search expressions . 287
Searching with wildcards . 288
Searching for special characters as literals . 289
Operators and modifiers . 290
Modifiers . 297

Managing Collections. 298
Maintenance options . 298
Securing a collection . 298

Chapter 16 Sending and Receiving E-mail 301
Using ColdFusion with Mail Servers . 302

Sending E-mail Messages . 302
Sending SMTP mail with cfmail . 303

Sample Uses of cfmail . 304
Sending form-based e-mail . 304
Sending query-based e-mail . 304
Sending e-mail to multiple recipients . 305

Customizing E-mail for Multiple Recipients . 306
Attaching a MIME file . 307

Advanced Sending Options. 308
Sending mail as HTML . 308
Error logging and undelivered messages . 308

Receiving E-mail Messages . 309
Using cfpop . 309
cfpop query variables . 310

Handling POP Mail . 310
Retrieving only message headers . 310
Retrieving an entire message . 312
Retrieving attachments with messages . 313
Deleting messages . 314

Chapter 17 Managing Files on the Server 317
Using cffile . 318

Uploading Files . 319
Resolving conflicting filenames . 321
Controlling the type of file uploaded . 321

Setting File and Directory Attributes. 323
Windows . 323
UNIX . 323
Developing Web Applications with ColdFusion DRAFT 5 / 9 / 0 1 P a t h / F i l e n a m e / A u t h o r

xii Contents
Evaluating the Results of a File Upload . 324

Moving, Renaming, Copying, and Deleting Server Files . 326

Reading, Writing, and Appending to a Text File . 327
Reading a text file . 327
Writing a text file . 328

Performing Directory Operations . 329
Returning file information . 329

Chapter 18 Interacting with Remote Servers 331
Using cfhttp to Interact with the Web . 332

Using the cfhttp Get Method . 332

Creating a Query from a Text File. 335

Using the cfhttp Post Method . 337

Performing File Operations with cfftp . 341
Caching connections across multiple pages . 343
Connection actions and attributes . 344

Moving Complex Data Structures Across the Web with WDDX 345
An overview of distributed data for the Web . 345
WDDX and Web Services . 346
WDDX components . 346
Working with application-level data . 347
Data exchange across application servers . 347
How WDDX works . 348

Converting CFML Data to a JavaScript Object . 349

Transferring Data from Browser to Server . 350

Storing Complex Data in a String. 353

Chapter 19 Application Security 355
ColdFusion Security Features . 356

Remote Development Services (RDS) Security. 356

Overview of User Security . 357

Using Advanced Security in Application Pages. 358

Using the cfauthenticate tag . 359

Authentication and Authorization Functions . 360
Using the IsAuthenticated function . 360
Using the IsAuthorized function . 360

Catching Security Exceptions . 361

Using the cfimpersonate Tag . 362

Example of User Authentication and Authorization . 363

xiii
Authenticating users in Application.cfm . 363
Checking for authentication and authorization . 365

Chapter 20 Using cfobject to Invoke Component Objects .
367
Component Object Overview . 368

About COM . 368
About CORBA . 368
About Java objects . 368

Invoking Component Objects . 369
Using properties . 369
Calling methods . 369
Calling nested objects . 370

Getting Started with COM/DCOM . 370
Requirements for COM . 370
Registering the object . 371
Finding the component ProgID and methods . 371

Creating and Using COM Objects . 374
Connecting to COM objects . 374
Setting properties and invoking methods . 375

Getting Started with CORBA . 376

Calling CORBA Objects . 376
Declaring structures and sequences . 376
Exception handling . 378

Calling Java Objects . 378
Getting Started with Java . 378
Java and Cold Fusion Data Type Conversions . 381
Exception Handling . 382
The class loading mechanism . 384
A more complex Java example . 385

Chapter 21 Building Custom CFXAPI Tags 389
What Are CFX Tags?. 390

Before You Begin Developing CFX Tags in Java. 391
Sample Java CFXs . 391
Setting up your development environment to develop CFXs in Java . . . 391
Customizing and Configuring Java . 392

Writing a Java CFX. 393
Processing requests . 393
Loading Java CFX classes . 395
Automatic class reloading . 395
Life cycle of Java CFXs . 396
Calling the CFX from a ColdFusion page . 396
Developing Web Applications with ColdFusion DRAFT 5 / 9 / 0 1 P a t h / F i l e n a m e / A u t h o r

xiv Contents
ZipBrowser Example. 397

Approaches to Debugging Java CFXs . 398
Outputting debug information . 398
Using the debugging classes . 399

Developing CFX Tags in C++. 401
Sample C++ CFXs . 401
Setting up your C++ development environment . 401
Using the Tag Wizard to create CFXs in C++ . 401
Compiling C++ CFXs . 402
Implementing C++ CFX tags . 402
Debugging C++ CFXs . 402

Registering CFXs . 404

Distributing CFX Tags. 405

Index . 407

About This Book
Developing ColdFusion Applications describes the process of developing Web
applications using ColdFusion. In the first eight chapters, you can follow the
instructions presented to learn how to create basic ColdFusion applications. Then,
chapters nine through 19 cover various topics of interest in enhancing your
applications. Finally, chapters 20 through 23 explain how to extend ColdFusion’s
capabilities.

Because of the power and flexibility of ColdFusion, you can create many different
types of Web applications of varying complexity. As you become more familiar with
the material presented in this manual, and begin to develop your own applications,
you will want to refer to the CFML Reference for details about various tags and
functions.

Contents

• Intended Audience... xvi

• New Features .. xvi

• Developer Resources... xvii

• About ColdFusion Documentation .. xviii

• Getting Answers ...xx

• Contacting Macromedia..xx

xvi About This Book
Intended Audience
Developing ColdFusion Applications is intended for Web application programmers
who are learning ColdFusion orwish to extended their ColdFusion programming
knowledge. It provides a solid grouding in the tools that ColdFusion provides to
develop Web applications. The initial chapters provide e instructions for creating a
basic ColdFusion application and are intended for those who are new to ColdFusion.
Later chapters cover more specific features in greater detail and are intended for
both new ColdFusion programmers and for those who are looking to extend existing
skill.

New Features
The following table lists the new features in ColdFusion 5:

Benefit Feature Description

Breakthrough
productivity

User-defined functions Create reusable functions to
accelerate development.

Query of queries Easily integrate data from
heterogeneous sources by
merging and querying data in
memory using standard SQL.

Server analysis and
troublshooting

Quickly detect and diagnose
server errors with built-in server
reporting and the new Log File
Analyzer.

Powerful
business
intelligence
capabilities

Charting engine Create professional-quality charts
and graphs from queried data
without leaving the ColdFusion
environment.

Enhanced Verity K2 full-text
search

Index and search up to 250,000
documents and enjoy greater
performance.

Reporting interface for
Crystal Reports 8.0

Create professional-quality
tabular reports from queried data
and applications.

Developer Resources xvii
Developer Resources
Macromedia, Inc. is committed to setting the standard for customer support in
developer education, technical support, and professional services. The Web site is

Enhanced
performance

Core engine tuning Take advantage of dramatically
improved server performance and
reduced memory usage to deliver
faster, more scalable applications.

Incremental page delivery Improve response time by
delivering page output to users as
it is built.

Wire protocol database
drivers

Deliver high-performance ODBC
connectivity using new drivers.

Easy
managment

Application deployment
services

Effortlessly and reliably deploy,
archive, or restore entire
applications using ColdFusion
archive files.

Enhanced application
monitoring

Keep track of server performance
and availability with customizable
alerts and recovery.

SNMP support Monitor ColdFusion applications
from enterprise management
systems.

Expanded
integration

Expanded Linux support Deploy on additional Linux
distributions, including SuSE and
Cobalt.

Enhanced hardware load
balancer integration

Apply optimized, agent-based
support for hardware load
balancers, including new support
for the Cisco CSS 11000.

Enhanced COM support Experience easier integration with
COM components.

Benefit Feature Description

xviii About This Book
designed to give you quick access to the entire range of online resources, as the
following table describes.

About ColdFusion Documentation
ColdFusion documentation is designed to provide support for the complete
spectrum of participants. The print and online versions are organized to allow you to
quickly locate the information that you need. The ColdFusion online documentation
is provided in HTML and Adobe Acrobat formats.

Resource Description URL

Macromedia Web
site

General information about Macromedia
products and services

www.macromedia.com/

Information on
ColdFusion

Detailed product information on
ColdFusion and related topics

www.coldfusion.com/products/coldfusion/

Technical
Support

Professional support programs that
Macromedia offers.

www.coldfusion.com/support/

ColdFusion
Support Forum

Access to experienced ColdFusion
developers through participation in the
Online Forums, where you can post
messages and read replies on many
subjects relating to ColdFusion.

http://forums.coldfusion.com/spectraconf/

Installation
Support

Support for installation-related issues
for all Macromedia products

www.coldfusion.com/support/installation/

Professional
Education

Information about classes, on-site
training, and online courses offered by
Macromedia

www.coldfusion.com/developer/training.cfm

Developer
Community

All the resources that you need to stay
on the cutting edge of ColdFusion
development, including online
discussion groups, Knowledge Base,
technical papers and more

www.coldfusion.com/developer/

ColdFusion Dev
Center

Development tips, articles,
documentation, and white papers

www.coldfusion.com/developer/
coldfusionreferencedesk/

Macromedia
Alliance

Connection with the growing network of
solution providers, application
developers, resellers, and hosting
services creating solutions with
ColdFusion

www.coldfusion.com/partners/

About ColdFusion Documentation xix
Printed and online documentation set
The ColdFusion documentation set consists of the following titles.

Viewing online documentation
All ColdFusion documentation is available online in HTML and Adobe Acrobat PDF
formats. To view the HTML documentation, open the following URL on the Web
server running ColdFusion: http://localhost/coldfusion/docs/dochome.htm.

To view and print ColdFusion documentation in Acrobat format, open the following
URL on the Web server running ColdFusion: http://localhost/coldfusion/docs/
AcrobatDocs/index.htm.

Printing ColdFusion documentation
To read printed documentation, locate the Adobe Acrobat PDF files installed with the
product. The PDF files offer excellent print output. You can print an entire book or
individual sections.

Locate the ColdFusion PDF files by opening the following URL on the host system:
http://localhost/coldfusion/docs/AcrobatDocs/index.htm

Book Description

Installing and
Configuring
ColdFusion Server

Describes system installation and basic configuration for
Windows NT, Windows 2000, Solaris, Linux, and HP-UX

Advanced
ColdFusion Server
Administration

Describes how to connect your data sources to the ColdFusion
Server, configure security for your applications, and how to use
ClusterCATS to manage scalability, clustering, and
load-balancing for your site

Developing
ColdFusion
Applications

Describes on how to develop your dynamic Web applications,
including retrieving and updating your data, using structures, and
forms.

CFML Reference The online-only ColdFusion Reference provides descriptions,
syntax, usage, and code examples for all ColdFusion tags,
functions, and variables.

CFML Quick
Reference

A brief guide that shows the syntax of ColdFusion tags,
functions, and variables

Using ColdFusion
Studio

Describes how to use ColdFusion Studio to build, test, and
deploy Web content, including using the built-in editor for a
variety of scripting and markup languages

xx About This Book
Getting Answers
One of the best ways to solve particular programming problems is to tap into the vast
expertise of the ColdFusion developer communities on the ColdFusion Forums.
Other developers on the forum can help you figure out how to do just about anything
with ColdFusion. The search facility can also help you search messages from the
previous 12 months, allowing you to learn how others have solved a problem that
you might be facing. The Forums is a great resource for learning ColdFusion, but it is
also a great place to see the ColdFusion developer community in action.

Contacting Macromedia

Corporate
headquarters

Macromedia, Inc.
600 Townsend street
San Francisco, CA 4103

Tel: 415.252.2000
Fax: 415.626.0554

Web: www.macromedia.com

Technical
support

Macromedia offers a range of telephone and Web-based
support options. Go to http://www.coldfusion.com/
support/ for a complete description of technical support
services.

You can make postings to the ColdFusion Support Forum
(http://forums.coldfusion.com/DevConf/index.cfm) at
any time.

Sales Toll Free: 888.939.2545

Tel: 617.219.2100
Fax: 617.219.2101

E-mail: sales@macromedia.com

Web: http://commerce.coldfusion.com/purchase/
index.cfm

Chapter 1

Introduction to ColdFusion
This chapter explains the difference between creating static Web pages with HTML
and creating dynamic applications with ColdFusion. It also describes what
ColdFusion is and how it works.

Contents

• A Quick Web Overview.. 2

• Before You Begin ... 3

• What is ColdFusion?.. 4

• ColdFusion Features and Components... 5

• How ColdFusion Server Works... 8

2 Chapter 1 Introduction to ColdFusion
A Quick Web Overview
Over the last few years, the Web changed from being simply a collection of static
HTML pages to an application development platform. Rather than offering a space
where organizations can merely advertise goods and services, similar to traditional
yellow pages directories, companies conduct business ranging from e-commerce to
managing internal business processes. For example, a static HTML page allows a
bookstore to publish its location, list services such as the ability to place special
orders, and advertise upcoming events like book signings. A dynamic site for the
same bookstore allows customers to order books online, write reviews of books they
read, and even get suggestions for purchasing books based on their reading
preferences.

ColdFusion is a rapid application development environment that lets you build
dynamic sites. You can use the Web to handle business transactions and conduct the
day-to-day business of your organization.

Before You Begin 3
Before You Begin
Before you begin using ColdFusion to create your Web applications, you should be
familiar with HTML, relational database design and management, and Structured
Query Language (SQL).

HTML
You will find that ColdFusion tags (CFML) are similar in syntax to HTML tags, yet,
unlike HTML, they enable you to create dynamic Web pages. You should understand
how to create a basic HTML page, put information into tables, gather data in forms,
and create links.

Relational database design and management
If you plan on creating applications that use data from existing data sources, you
should understand how the data is organized. In most cases, this means
understanding how tables are organized to prevent unnecessary duplication of data.
For example, if you have data about employees, rather than repeating the
department number and name in each employee’s record, you most likely have a
separate table that lists each department number and name just once.

SQL
Familiarity with some SQL is helpful as you develop your ColdFusion applications. In
particular, you should be able to use the SELECT, UPDATE, INSERT, and DELETE
statements, as well as WHERE clauses and Boolean logic operators.

4 Chapter 1 Introduction to ColdFusion
What is ColdFusion?
ColdFusion lets you create page-based Web applications using ColdFusion Markup
Language (CFML), the tag-based language you use to create server-side scripts that
dynamically control data integration; application logic; and user interface
generation. ColdFusion Web applications can contain XML, HTML, and other client
technologies such as CSS and JavaScript.

ColdFusion application pages are different from static HTML pages in the following
ways:

• They are saved and referenced with a specific file extension.

• The default ColdFusion file extension is cfm.

• They contain ColdFusion Markup Language.

Editions of ColdFusion
There are two editions of ColdFusion: Enterprise and Professional. Using ColdFusion
Enterprise or Professional Edition and ColdFusion Studio, you can build Web
applications that leverage existing technologies and business systems such as
RDBMS, messaging servers, file repositories, directory servers, and distributed object
middleware. ColdFusion Enterprise also offers advanced security features, load
balancing, server failover, and visual cluster administration.

ColdFusion Features and Components 5
ColdFusion Features and Components
ColdFusion provides a comprehensive set of features and components for
developing and managing your Web applications. Using the ColdFusion
components, you can enhance the speed and ease of development, dynamically
deploy your applications, integrate new and legacy technologies, and build secure
applications.

About the features
The following table describes the ColdfFusion features that let you manage your Web
site:

Benefits Features

Rapid
development

• A tag-based server scripting language that is powerful and
intuitive

• Two-way visual programming and database tools

• Remote interactive debugging for quickly identifying and fixing
problems

• Web application wizards to automate common development
tasks

• Source control integration to enable team development
• Secure file and database access using HTTP for remote

development
• A tag-based component architecture for flexible code reuse

Scalable
deployment

• A multithreaded service architecture that scales across
processors

• Database connection pooling to optimize database performance
• Just-in-time page compilation and caching to accelerate page

request processing
• Dynamic load balancing for scalable performance in a cluster

environment (Enterprise Edition only)
• Automatic server recovery and failover for high availability

(Enterprise Edition only)

6 Chapter 1 Introduction to ColdFusion
For detailed information about security, see Advanced ColdFusion Administration.

For the latest publications from Macromedia on security, visit the Security Zone at
http://www.coldfusion.com/developer/securityzone/.

For a complete feature list and more detailed information, see the ColdFusion
product pages at http://www.coldfusion.com/coldfusion.

About the components
ColdFusion applications rely on several core components:

• ColdFusion application pages

• ColdFusion Server

• ColdFusion Administrator

• ODBC data sources and other data sources

In addition to the core components, as you become more familiar with ColdFusion
and build more complex applications, you can use ColdFusion Extensions to extend
its capabilities.

ColdFusion application pages

ColdFusion application pages (often called templates) look somewhat like HTML
pages, but are much more dynamic and powerful. They are the functional parts of a
ColdFusion application, including the user interface pages and forms that handle

Open integration • Database connectivity using native database drivers (Enterprise
Edition only), ODBC, or OLE DB

• Embedded support for full-text indexing and searching

• Standards-based integration with directory, mail, HTTP, FTP, and
file servers

• Connectivity to distributed object technologies, including
CORBA (Enterprise Edition only), COM (Windows Enterprise
Edition only), Java objects and EJBs

• Open extensibility with C/C++ and Java

Security • Integration with existing authentication systems, including
Windows NT domain and LDAP directory servers, and
proprietary user and group databases

• Advanced access control so that server administrators can
control developers’ access to files and data sources

• Support for existing database security
• Server sandbox security for protecting multiple applications on a

single server (Enterprise Edition only)
• Support for existing Web server authentication, security, and

encryption

Benefits Features

ColdFusion Features and Components 7
data input and format data output. They can contain ColdFusion (CFML) tags,
HTML tags, CFScript, JavaScript, and anything else that you can normally embed in
an ordinary HTML page. You can easily access data sources, such as relational
databases, from your application pages. The default file extension used for
ColdFusion application pages is cfm.

CFML

CFML is a tag-based server scripting language that encapsulates complex processes,
such as connecting to databases and LDAP servers, and sending e-mail. The core of
the ColdFusion development platform language is more than 70 server-side tags and
more than 200 functions.

ColdFusion Server

ColdFusion Server listens for requests from the Web server to process ColdFusion
application pages. It runs as a service under Windows NT and as a process under
UNIX.

For information on installing and configuring ColdFusion Server, see Installing and
Configuring ColdFusion Server.

ColdFusion Administrator

You use the Administrator to configure various ColdFusion Server options, including:

• ColdFusion data sources

• Debugging output

• Server settings

• Application security

• Server clustering

• Scheduling page execution

• Directory mapping

For details on using the Administrator, see Advanced ColdFusion Administration.

Data sources

ColdFusion applications can interact with any database that supports the ODBC
standard. However, ColdFusion is not limited to ODBC data sources. You can also
retrieve data using OLE-DB, native database drivers, or directory servers that support
the Lightweight Directory Access Protocol (LDAP). You can also retrieve data from
mail servers that support the Post Office Protocol (POP), and index the data in Verity
collections.

8 Chapter 1 Introduction to ColdFusion
How ColdFusion Server Works
Regardless of which ColdFusion Server you have installed, ColdFusion application
pages are processed on the server at runtime, each time they are requested by a
browser.

A page request happens when you click a Web site link to open a Web page in your
browser. When you request a ColdFusion application page, ColdFusion Server
processes the request, retrieves any data if necessary, and routes the data through
the Web server, back to your browser.

The following steps describe in more detail what happens when you open a
ColdFusion page:

1 The client requests a page that contains CFML tags.

2 The Web server passes files to ColdFusion Server if a page request contains a
ColdFusion file extension.

3 ColdFusion Server scans the page and processes all CFML tags.

4 ColdFusion Server then returns only HTML and other client-side technologies to
the Web server.

5 The Web server passes the page back to the browser.

Chapter 2

Writing Your First ColdFusion
Application
This chapter guides you through the ColdFusion development process as you create
a ColdFusion application page, save it, and view it in a browser.

Contents

• The Development Process.. 10

• Working with ColdFusion Application Pages.. 10

• Working with Variables ... 13

• Development Considerations .. 16

10 Chapter 2 Writing Your First ColdFusion Application
The Development Process
Whether you are creating a static HTML page or a ColdFusion application page, you
follow the same iterative process:

1 Write some code.

2 Save the code to a document or page.

3 View the page in a browser.

4 Modify the page.

5 Save the page again.

6 View it in a browser.

Working with ColdFusion Application Pages
While you can code your application pages using NotePad or any HTML editor, this
book uses ColdFusion Studio because it provides many features that make
ColdFusion development easier. You should install ColdFusion Studio if you have
not done so already.

About applicaton pages
From a coding perspective, the major difference between a static HTML page and a
ColdFusion application page is that ColdFusion pages contain ColdFusion Markup
Language (CFML). CFML is a markup language that is very similar in syntax to
HTML, so Web developers find it intuitive. Unlike HTML, which defines how things
are displayed and formatted on the client, CFML identifies specific operations that
are performed by ColdFusion Server.

Creating application pages
The following procedure creates a simple ColdFusion Application page, which you
use for other examples in this chapter.

To create a ColdFusion application page:

1 Open ColdFusion Studio.

2 Select File > New and select the Default Template for your new page.

3 Edit the file so that it appears as follows:

<html>
<head>
<title>Call Department</title>
</head>
<body>
Call Department

Working with ColdFusion Application Pages 11
<!--- Set all variables --->
<cfset department="Sales">
<!--- Display results --->
<cfoutput>
I’d like to talk to someone in #Department#.
</cfoutput>
</body>
</html>

Saving application pages
Instead of saving pages with an htm or html file extension, you save ColdFusion
application pages with a cfm or cfml extension. By default, the Web server knows to
pass a page that contains a cfm extension to the ColdFusion Server when it is
requested by a browser.

Save ColdFusion application pages underneath the Web root or another Web server
mapping so that the Web server can publish these pages to the Internet. For example,
you can create a directory myapps and save your practice pages there.

To save the page:

1 Select File > Save.

2 Save your page as calldept.cfm in myapps under the Web root directory.

For example, the directory path on your machine might be:

(on Windows NT) c:\inetpub\wwwroot\myapps

(on UNIX) <mywebserverdocroot>/myapps

Viewing application pages
You view the application page on the Web server to ensure that the code is working as
expected. Presently, your page is very simple. But, as you add more code, you will
want to ensure that the page continues to work.

To view the page in a local browser:

1 Open a Web browser on your local machine and enter the following URL:

http://127.0.0.1/myapps/calldept.cfm

where 127.0.0.1 refers to the localhost and is only valid when you are viewing
pages locally.

2 Use the Web browser facility that allows you to view a page’s source code to
examine the code that the browser uses for rendering.

Note that only HTML and text is returned to the browser.

12 Chapter 2 Writing Your First ColdFusion Application
Compare the code that was returned to the browser with what you originally
created. Notice that the ColdFusion comments and CFML tags are processed, but
do not appear in the HTML file that is returned to the browser.

Reviewing the code

The application page that you just created contains both HTML and CFML. You used
the CFML tag cfset to define a variable, Department, and set its value to “Sales.” You
then used the CFML tag cfoutput to display text and the value of the variable. The
following table describes the code and its function:

Original ColdFusion page HTML file returned by Web server

<html>
<head>
<title>Call Department</title>
</head>
<body>
Call Department

<!--- Set all variables --->
<cfset department="Sales">
<!--- Display results --->
<cfoutput>
I’d like to talk to someone in
#Department#.
</cfoutput>
</body>
</html>

<html>
<head>
<title>Call Department</title>
</head>
<body>
Call Department

I’d like to talk to someone in Sales.

</body>
</html>

Code Description

<!--- Set all variables ---> CFML comment, which is not returned in the
HTML page.

<cfset Department="Sales"> Creates a variable named Department and sets
the value equal to Sales.

<!--- Display results ---> CFML comment, which is not returned in the
HTML page.

<cfoutput>
I’d like to talk to someone in
#Department#.
</cfoutput>

Displays whatever appears between the opening
and closing cfoutput tags; in this example, the
text “I'd like to talk to someone in” is followed by
the value of the variable Department, which is
“Sales.”

Working with Variables 13
Working with Variables
A Web application page is different from a static Web page because it can publish
data dynamically. This involves creating, manipulating, and outputting variables.

A variable stores data that you can use in applications. As with other programming
languages, you set variables in ColdFusion to store data that you want to access later.
You reference a range of variables to perform different types of application
processing.

About variables
ColdFusion variable names are case-insensitive. The variable names CITY and city
refer to the same data.

The kind of information that variables contain varies. Two characteristics distinguish
the information in a variable:

• Data type

• Scope type

Data types

A variable’s data type specifies the kind of value a variable can represent, such as a
text string or number. ColdFusion does not require you to specify a variable’s data
type. Whether a variable represents a string, a number, a Boolean value (Yes/No), a
date and time, or a more complex object such as an array or structure, ColdFusion
automatically uses the appropriate internal data representation when you assign its
value. However, ColdFusion does provide methods to examine and change the type
of data that a variable represents. For a complete list of data types see the CFML
Reference.

For example, use the following syntax to create a string variable:

<cfset mystring="Hello world">

The following example uses scientific notation to create a floating-point numeric
variable:

<cfset myfloat=1.296e-3>

Scope types

Variables differ in the source the data came from, the places in your code where they
are meaningful, and how long their values persist. These considerations are generally
referred to as a variable’s scope.

ColdFusion has many different scope types, which are identified by prefixes to a
variable name. For example, the variable Department in calldept.cfm is a local
variable (a variable that has meaning on the current page). Local variables have the
optional prefix Variables. Instead of writing:

I’d like to talk to someone in #Department#.

14 Chapter 2 Writing Your First ColdFusion Application
you can write:

I’d like to talk to someone in #Variables.Department#.

Some variable scopes, such as the local scope, do not require the scope identifier
prefix, while others do. However, it is good programming practice to use prefixes for
most or all scopes. This helps to better identify each variable’s use and can prevent
multiple uses of the same name. This book uses the scope prefix for all variables
except for local variables.

The following table lists some of the more common types of variable scopes and the
prefixes that you use to identify the variables. Other chapters in this book discuss
additional scope types. The CFML Reference has a complete list of scope types, their
identifiers, and how they are used.

Using the pound sign (#)

You surround a ColdFusion variable or function with pound signs (#) to tell the
ColdFusion Server that it is not plain text. You only need to use pound signs in
limited circumstances, particularly in the cfoutput and cfquery tag blocks. You do
not need to use pound signs when you create a variable, assign it a value, or use it in
a ColdFusion expression or as a parameter in a ColdFusion function.

Note
Remember that ColdFusion cannot interpret anything, including variables, that is
not inside a ColdFusion tag or tag block.

The following table illustrates the basic use of pound signs. For a detailed description
of the use of pound signs, see CFML Reference.

Scope type Prefix Description

Local (or
Variables)

Variables Variables created using cfset or cfparam, with or without
specifying the scope prefix. You must define the variable
on the current page or a page you include using
cfinclude.

Form Form Data entered in tags in an HTML form or ColdFusion
cfform tag block and processed on an action page.

URL URL Variables passed to a page as URL query string
parameters.

CFML code Results

cfset Department="Sales"> The variable named Department is created
and the value is set to Sales.

<cfoutput>
I’d like to talk to someone in
Department.
</cfoutput>

ColdFusion does not treat Department as a
variable because it is not surrounded by
pound signs. The HTML page displays:
I’d like to talk to someone in Department.

Working with Variables 15
Adding more variables to the application
Applications can use many different variables. For example, the calldept.cfm
application page can set and display values for department, city, and salary.

To modify the application:

1 Open the file calldept.cfm in ColdFusion Studio,.

2 Modify the code so that it appears as follows:

<html>
<head>
<title>Call Department</title>

</head>
<body>
Call Department

<!--- Set all variables --->
<cfset Department="Sales">
<cfset City="Boston">
<cfset Salary="110000">
<!--- Display results --->
<cfoutput>
I’d like to talk to someone in #Department# in #City# who earns at

least #Salary#.
</cfoutput>
</body>
</html>

3 Save the file.

<cfoutput>
I’d like to talk to someone in
#Department#.
</cfoutput>

ColdFusion replaces the variable
Department with its value. The HTML page
displays:
I’d like to talk to someone in Sales.

<cfoutput>
The department name spelled
backward is Reverse(Department).
</cfoutput>

ColdFusion sees Reverse(Department) as
text and displays it unchanged. The HTML
page displays:

The department name spelled backward is
Reverse(Department).

<cfoutput>
The department name spelled
backward is #Reverse(Department)#.
</cfoutput>

ColdFusion uses the Reverse function to
reverse the text in the Department variable
and displays the result. The pound signs tell
cfoutput to interpret Reverse as a
ColdFusion function. The Reverse function
uses the Department variable name. The
HTML page displays:

The department name spelled backward is
selaS.

CFML code Results

16 Chapter 2 Writing Your First ColdFusion Application
4 View the page in your Web browser by entering the following URL:

http://127.0.0.1/myapps/calldept.cfm.

Development Considerations
The same development rules that apply for any programming environment apply to
ColdFusion. You should also follow the same programming conventions that you
would with any other language:

• Comment your code as you go.

HTML comments use this syntax: <!-- html comment -->

CFML comments add an extra dash: <!--- cfml comment --->

ColdFusion removes CFML comments from the HTML that it sends to the
browser, so users do not see them if they view the HTML source. ColdFusion does
send HTML comments to the browser.

• Filenames should be all one word, begin with a letter, and can contain only
letters, numbers, and the underscore.

• Filenames should not contain special characters.

• Some operating systems are case-sensitive, so you should be consistent with your
use of capital letters in filenames.

Chapter 3

Querying a Database
This chapter describes how to retrieve data from a database, work with query data,
and enable debugging in ColdFusion applications. You will learn how to use the
ColdFusion Administrator to set up a data source and enable debugging, use the
cfquery tag to query a data source, and use the cfoutput tag to output the query
results to a Web page.

Contents

• Publishing Dynamic Data... 18

• Understanding Database Basics .. 19

• Understanding Data Sources ... 20

• Accessing Data Sources .. 21

• Retrieving Data.. 25

• Writing SQL.. 26

• Building Queries.. 28

• Outputting Query Data... 30

• Getting Information About Query Results .. 32

• Using Query Results in Queries.. 34

18 Chapter 3 Querying a Database
Publishing Dynamic Data
A Web application page is different from a static Web page because it can publish
data dynamically. This can involve querying databases, connecting to LDAP or mail
servers, and leveraging COM, DCOM, CORBA, or Java objects to retrieve, update,
insert, and delete data at runtime—as your users interact with pages in their
browsers.

For ColdFusion developers, the term data source can refer to a number of different
types of structured content accessible locally or across a network. You can query
Web sites, LDAP servers, POP mail servers, and documents in a variety of formats.

Most commonly though, a database drives your applications, and for this discussion
a data source means the entry point from ColdFusion to a database.

In this chapter, you build a query to retrieve data from the CompanyInfo data source,
which accesses a Microosft Access database (company.mdb), on Windows systems
or a DBase database on UNIX systems. In subsequent chapters in this book, you will
insert and update data in this database.

To query a database, you need to use:

• ColdFusion data sources

• The cfquery tag

• SQL commands

Understanding Database Basics 19
Understanding Database Basics
You do not need a thorough knowledge of databases to develop a data-driven
ColdFusion application, but you need to know some basic concepts and techniques.

A database is a structure for storing information. Databases are organized in tables,
which are collections of related items. For example, a table might contain the names,
street addresses, and phone numbers of individuals. Think of a table as a grid of
columns and rows. In this case, one column contains names, a second column
contains street addresses, and the third column contains phone numbers. Each row
constitutes one data record. In this case, each row is unique because it applies to one
individual. Rows are also referred to as records. Columns are also referred to as
fields.

You can organize data in multiple tables. This type of data structure is known as a
relational database and is the type used for all but the simplest data sets.

20 Chapter 3 Querying a Database
Database design guidelines
From this basic description, a few database design rules emerge:

• Each record should contain a unique identifier, known as the primary key. This
can be an employee ID, a part number, or a customer number. The primary key is
typically the column used to maintain each record’s unique identity among the
tables in a relational database.

• After you define a column to contain a specific type of information, you must
enter data in that column in a consistent way.

• To enter data consistently, you define a data type for the column, such as
allowing only numeric values to be entered in the salary column.

• Assessing user needs and incorporating those needs in the database design is
essential to a successful implementation. A well-designed database
accommodates the changing data needs within an organization.

The best way to familiarize yourself with the capabilities of your database product or
database management system (DBMS) is to review the product documentation.

Understanding Data Sources
A database is a file or server that contains a collection of data. A data source defines
the properties which ColdFusion uses to connect to a specific database. You add
data sources to your ColdFusion Server so that you can connect to the databases
from your ColdFusion applications.

About Open Database Connectivity
Open Database Connectivity (ODBC) is a standard interface for connecting to a
database from an application. Applications that use ODBC must have an ODBC
driver installed and configured for each data source.

On Windows, you can check your system’s installed drivers by opening the ODBC
Data Source Manager in the Windows Control Panel.

On Windows, the installed set of ColdFusion ODBC drivers includes:

• Microsoft SQL Server

• Microsoft Access and FoxPro databases

Accessing Data Sources 21
• Borland dBase-compliant databases

• Microsoft Excel worksheet data ranges

• Borland Paradox Databases

• Informix databases

• Progress databases

• Oracle 8 databases

• Centura SQLBase databases

• Sybase ASE databases

• Delimited text files

You can also use any additional ODBC drivers that are installed on your system.

On UNIX, look in the ODBC page of the ColdFusion Administrator for a list of
available ODBC drivers.

A good source of information on ODBC is the ODBC Programmer’s Reference at http:/
/www.microsoft.com/data/odbc.

Accessing Data Sources
There are two ways to access data sources:

• Add data sources in the ColdFusion Administrator.

You assign a data source name and set all the information required to establish
an ODBC connection. You then use the data source name in any CFML tags that
establish database connections. This technique puts all the information about a
ColdFusion Server’s database connections in a single, easy-to-manage location.

• Specify the database information directly in your CFML tag.

This way you accesses the data source dynamically. It eliminates the need for you
to add a data source for each database on your server. It also allows a ColdFusion
application to run on multiple servers without having to statically configure each
server independently.

22 Chapter 3 Querying a Database
Adding data sources
You use the ColdFusion Administrator to add data sources to the ColdFusion
Administrator.

When you add a data source, you assign it a name so that you can reference it within
tags such as cfquery on application pages to query databases. During a query, the
data source tells ColdFusion which database to connect to and what parameters to
use for the connection.

Use the following procedure to add the CompanyInfo data source that you use in
many examples in this book.

Note
By default, the ColdFusion setup installs the CompanyInfo and cfsnippets databases
used in examples in this book and adds them to the available ODBC data sources.
Therefore, this procedure should not be necessary to work with examples in this
book.

To add a data source:

1 Start the ColdFusion Administrator.

On Windows, select Start > Programs > ColdFusion Server > ColdFusion
Administrator. On UNIX, enter the URL hostname/CFIDE/administrator in
your browser.

The Administrator prompts you for a password if you assigned one to the
ColdFusion Server during the installation.

2 Enter a password to gain access to the Administrator.

3 Select ODBC under the Data Sources heading on the left menu.

Accessing Data Sources 23
4 Name the data source CompanyInfo.

5 On Windows Select Microsoft Access Driver (*.mdb) from the drop-down box to
describe the ODBC driver. On UNIX, select the Merant Dbase/FoxPro driver.

6 Click Add.

7 In the Database File field, enter the full path of the database. (You can also use
the Browse button to locate the file.).

On Windows specify the path to the company.mdb file, typically
C:\CFusion\database\Company.mdb. On UNIX, specify the path to the
CompanyInfo directory, typically /opt/coldfusion/database/CompanyInfo.

8 Click Create to create the CompanyInfo data source.

The data source is added to the data source list.

9 Locate CompanyInfo in the data source list.

10 Select Verify to run the verification test on the data source.

If the data source was created, you should see this message:

The connection to the data source was verified successfully.

11 Click Go Back to return to the data sources list.

For more information about managing data sources, see Advanced ColdFusion
Administration.

Specifying a connection string

You can dynamically override ODBC connection information that you set in the
ColdFusion Administrator. You can also specify connection attributes that are not
set in the Administrator. To do so, use the connectstring attribute in any CFML tag
that connects to a database: cfquery, cfinsert, cfupdate, cfgridupdate, and
cfstoredproc.

For example, the following code creates a connection to a defined Microsoft
SQLServer data source using a connect string to specify the Application and Work
Station ID.

<cfupdate datasource = "mssql"
connectstring = "APP=ColdFusion;WSID=fenway"
tablename = "department">

Note
Connect string properties are specific to the database you are connecting to. See the
documentation for your database for a list of connect string properties.

24 Chapter 3 Querying a Database
Adding data source notes and considerations

When adding data sources to ColdFusion Server, keep these guidelines in mind:

• Data source names should be all one word and begin with a letter.

• Data source names can contain only letters, numbers, and the underscore.

• Data source names should not contain special characters.

• Although data source names are not case-sensitive, you should use a consistent
capitalization scheme.

• A data source must exist in the ColdFusion Administrator before you use it on an
application page to retrieve data (unless you specify the data source
dynamically).

Specifying data sources dynamically
To specify a data source dynamically, use the following attribute in the cfquery tag:

dbtype = "dynamic"

Specify all the required ODBC connection information, including the ODBC driver
and the database location, in the connectstring attribute. For example, you could
use the following code for a query that dynamically specifies the pubs database on a
local Microsoft SQLServer:

<cfquery name = "datelist"
dbtype = "dynamic"
blockfactor = 100
connectstring = "DRIVER={SQLSERVER};SERVER=(local);UID=sa;PWD=;

DATABASE=pubs">
SELECT * FROM authors

</cfquery>

The following example uses a Microsoft Access database:

<cfquery name="titles"
dbtype = "dynamic"
ConnectString="DRIVER=Microsoft Access Driver (*.mdb);

DBQ=C:\CFusion\Database\cfsnippets.mdb;DriverId=281;
FIL=MS Access;MaxBufferSize=2048;PageTimeout=5">

SELECT * FROM Courses
</cfquery>

Retrieving Data 25
Retrieving Data
You can query databases to retrieve data at runtime. The retrieved data, called the
result set, is stored on that page as a query object. When retrieving data from a
database, perform the following tasks:

• Use the cfquery tag on a page to tell ColdFusion how to connect to a database.

• Write SQL commands inside the cfquery block to specify the data that you want
to retrieve from the database.

• Later on the page, reference the query object and use its data values in any tag
that presents data, such as cfoutput, cfgrid, cftable, cfgraph, or cftree.

The cfquery tag
The cfquery tag is one of the most frequently used CFML tags. You use it in
conjunction with the cfoutput tag so that you can retrieve and reference the data
returned from a query.

When ColdFusion encounters a cfquery tag on a page, it does the following:

• Connects to the specified data source.

• Performs SQL commands that are enclosed within the block.

• Returns result set values to the page in a special kind of variable called a query
object. You specify the query object’s name in the cfquery tag’s name attribute.
Often, we refer to the query object simply as “the query”.

The cfquery tag syntax
<cfquery name="EmpList" datasource="CompanyInfo">

You’ll type SQL here
</cfquery>

In this example, the query code tells ColdFusion to:

• Use the CompanyInfo data source to connect to the company.mdb database.

• Store the retrieved data in the query object EmpList.

Follow these rules when creating a cfquery tag:

• The cfquery tag is a block tag, that is, it has an opening <cfquery> and ending
</cfquery> tag.

• Use the name attribute to name the query object so that you can reference it later
on the page.

• Use the datasource attribute to name an existing data source that should be
used to connect to a specific database. Alternatively, use the dbtype =
"dynamic" and connectString attributes to dynamically specify a database.

• Always surround attribute values with double quotes (").

• Place SQL statements inside the cfquery block to tell the database what to
process during the query.

26 Chapter 3 Querying a Database
• When referencing text literals in SQL, use single quotes (’). For example, Select
* from mytable WHERE FirstName=’Russ’ selects every record from mytable in
which the first name is Russ.

Writing SQL
In between the begin and end cfquery tags, write the SQL that you want the
database to execute.

For example, to retrieve data from a database:

• Write a SELECT statement that lists the fields or columns that you want to select
for the query.

• Follow the SELECT statement with a FROM clause that specifies the database
tables that contain the columns.

Tip
If you are using ColdFusion Studio, you can use the Query Builder to build SQL
statements by graphically selecting the tables and records within those tables that
you want to retrieve.

When the database processes the SQL, it creates a data set (a structure containing
the requested data) that is returned to ColdFusion Server. ColdFusion places the
data set in memory and assigns it the name that you defined for the query in the name
attribute of the cfquery tag.

You can reference that data set by name using the cfoutput tag later on the page.

Basic SQL syntax elements
The following sections present brief descriptions of the main SQL command
elements.

Statements

A SQL statement always begins with a SQL verb. The following keywords identify

commonly used SQL verbs:

Keyword Description

SELECT Retrieves the specified records

INSERT Adds a new row

UPDATEw Changes values in the specified rows

DELETE Removes the specified rows

Writing SQL 27
Statement clauses

Use the following keywords to refine SQL statements:

Operators

The following basic operators specify conditions and perform logical and numeric
functions:

SQL notes and considerations
When writing SQL in ColdFusion, keep the following guidelines in mind:

• There is a lot more to SQL than what is covered here. It is a good idea to purchase
one or several SQL guides that you can refer to.

• The data source, columns, and tables that you reference must exist in order to
perform a successful query.

Keyword Description

FROM Names the data tables for the operation

WHERE Sets one or more conditions for the operation

ORDER BY Sorts the result set in the specified order

GROUP BY Groups the result set by the specified select list items

Operator Description

AND Both conditions must be met

OR At least one condition must be met

NOT Exclude the condition following

LIKE Matches with a pattern

IN Matches with a list of values

BETWEEN Matches with a range of values

= Equal to

<> Not equal to

< Less than

> Greater than

<= Less than or equal to

>= Greater than or equal to

+ Addition

- Subtraction

/ Division

* Multiplication

28 Chapter 3 Querying a Database
• Some DBMS vendors use nonstandard SQL syntax (known as a dialect) in their
products. ColdFusion does not validate the SQL in a cfquery, so you are free to
use any syntax that is supported by your data source. Check your DBMS
documentation for nonstandard SQL usage.

Building Queries
As discussed earlier in this chapter, you build queries using the cfquery tag and SQL.

To query the table:

1 Create a new application page in ColdFusion Studio.

2 Edit the page so that it appears as follows:

<html>
<head>
<title>Employee List</title>
</head>
<body>
<h1>Employee List</h1>
<cfquery name="EmpList" datasource="CompanyInfo">

SELECT FirstName, LastName, Salary, Contract
FROM Employee

</cfquery>
</body>
</html>

3 Save the page as emplist.cfm in myapps under the Web root directory. For
example, the directory path on your machine might be:

C:\INETPUB\WWWROOT\myapps on Windows NT

4 Return to your browser and enter the following URL to view EmpList.cfm:

http://127.0.0.1/myapps/emplist.cfm

5 View the source in the browser.

The ColdFusion Server creates the EmpList data set, but only HTML and text is
sent back to the browser so you just see the heading “Employee List”. To display
the data set on the page, you must code tags and variables to output the data.

Building Queries 29
Reviewing the code

The query you just created retrieves data from the CompanyInfo database. The
following table describes the code and its function:

Query notes and considerations
When creating queries to retrieve data, keep the following guidelines in mind:

• Enter the query name and datasource attributes in the begin cfquery tag.

• Surround attribute settings with double quotes(").

• Make sure that a data source exists in the ColdFusion Administrator before you
reference it n a cfquery tag. Alternatively, use the dbtype = "dynamic" and
queryString attributes to dynamically specify a database.

• The SQL that you write is sent to the database and performs the actual data
retrieval.

• Columns and tables that you refer to in your SQL statement must exist, otherwise
the query will fail.

• Reference the query data by naming the query in one of the presentation tags,
such as cfoutput, cfgrid, cftable, cfgraph, or cftree later on the page.

Code Description

<cfquery name="EmpList"
datasource="CompanyInfo">

Queries the database specified in the
CompanyInfo data source

SELECT FirstName, LastName,
Salary, Contract
FROM Employee

Gets information from the FirstName,
LastName, Salary, and Contract fields in
the Employee table

</cfquery> Ends the cfquery block

30 Chapter 3 Querying a Database
Outputting Query Data
After you define a query on a page, you can use the cfoutput tag with the query
attribute to specify the query object that contains the data you want to output to a
page. When you use the query attribute:

• ColdFusion loops over all the code contained within the cfoutput block, once for
each row returned from a database.

• You must reference specific column names within the cfoutput block to output
the data to the page.

• You can place text, CFML tags, and HTML tags inside or surrounding the
cfoutput block to format the data on the page.

• You do not have to specify the query object name when you refer to a query
column. For example, if you specify the Emplist query in your cfoutput tag, you
can refer to the Firstname column in the Emplist query as either
Emplist.Firstname or just Firstname.

The cfoutput tag accepts a variety of optional attributes but, ordinarily, you use the
query attribute to define the name of an existing query.

To output query data on your page:

1 Return to empList.cfm in ColdFusion Studio.

2 Edit the file so that it appears as follows:

<html>
<head>
<title>Employee List</title>
</head>
<body>
<h1>Employee List</h1>
<cfquery name="EmpList" datasource="CompanyInfo">

SELECT FirstName, LastName, Salary, Contract
FROM Employee

</cfquery>
<cfoutput query="EmpList">
#FirstName#, #LastName#, #Salary#, #Contract#

</cfoutput>
</body>
</html>

3 Save the file as emplist.cfm.

4 View the page in a browser.

A list of employees appears in the browser, with each line displaying one row of
data.

You created a ColdFusion application page that retrieves and displays data from a
database. At present, the output is raw. You will learn how to format the data in the
next chapter.

Reviewing the code

Outputting Query Data 31
You now display the results of the query on the page. The following table describes
the code and its function:

Query output notes and considerations
When outputting query results, keep the following guidelines in mind:

• A cfquery must precede the cfoutput that references its results. Both must be on
the same page (unless you use the cfinclude tag).

• It is a good idea to run all queries before all output blocks.

• To output data from all the records of a query, specify the query name by using
the query attribute in the cfoutput tag.

• Columns must exist and be retrieved to the application in order to output their
values.

• Inside a cfoutput block that uses a cfquery attribute you can optionally prefix
the query variables with the name of the query, for example Emplist.FirstName.

• As with other attributes, surround the query attribute value with double quotes
(").

• As with any variables that you reference for output, surround column names with
pound signs (#) to tell ColdFusion to output the column’s current values.

• Add a
 tag to the end of the variable references so that ColdFusion starts a
new line for each row that is returned from the query.

Code Description

<cfoutput query="EmpList"> Display information retrieved in the EmpList
query. Display information for each record in
the query, until you run out of records.

#FirstName#, #LastName#,
#Salary#, #Contract#

Display the value of the FirstName,
LastName, Salary, Contract fields of each
record, separated by commas and spaces.

 Insert a line break (go to the next line) after
each record.

</cfoutput> End the cfoutput block.

32 Chapter 3 Querying a Database
Getting Information About Query Results
Each time you query a database with the cfquery tag, you get not only the data itself,
but also query properties, as described in the following table:

To output query data on your page:

1 Return to emplist.cfm in ColdFusion Studio.

2 Edit the file so that it appears as follows:

<html>
<head>
<title>Employee List</title>
</head>
<body>
<h1>Employee List</h1>
<cfquery name="EmpList" datasource="CompanyInfo">

SELECT FirstName, LastName, Salary, Contract
FROM Employee

</cfquery>
<cfoutput query="EmpList">

#FirstName#, #LastName#, #Salary#, #Contract#

</cfoutput>

<cfoutput>

The query returned #EmpList.RecordCount# records.
</cfoutput>
</body>
</html>

3 Save the file as emplist.cfm.

4 View the page in a browser.

The number of employees now appears below the list of employees.

Note
The variable cfquery.executionTime contains the amount of time, in milliseconds,
it took for the query to complete. Do not prefix the variable name with the query
name.

Reviewing the code

Property Description

RecordCount The total number of records returned by the query.

ColumnList A comma-delimited list of the query columns.

CurrentRow The current row of the query being processed by cfoutput.

Getting Information About Query Results 33
You now display the number of records retrieved in the query. The following table
describes the code and its function:

Query properties notes and considerations
When using query properties, keep the following guidelines in mind:

• Reference the query property within a cfoutput block so that ColdFusion
outputs the query property value to the page.

• Surround the query property reference with pound signs (#) so that ColdFusion
knows to replace the property name with its current value.

• Do not use the cfoutput tag query attribute when you output the RecordCount
or ColumnList property. If you do, you will get one copy of the output for each
row. Instead, prefix the property with the name of the query.

Code Description

<cfoutput> Display what follows

The query returned Display the text “The query returned”

#EmpList.RecordCount# Display the number of records retrieved in the EmpList
query

records Display the text “records”

</cfoutput> End the cfoutput block.

34 Chapter 3 Querying a Database
Using Query Results in Queries
ColdFusion allows you to use the results of a previous query in any cfquery tag that
returns row data to ColdFusion. You can query a database once and use the results in
several dependent queries. Queries generated from other queries are often referred
to as query of queries.

Query of query benefits
Performing queries on query results has many benefits:

• If you need to access the same tables multiple times, you greatly reduce access
time for tables with up to 10,000 rows because the data is already in memory.

• You can join and perform unions on results from different data sources.

For example, you can do a union on queries from different databases to eliminate
duplicates for a mailing list.

• You can efficiently manipulate cached query results in different ways. You can
query a database once, and then use the results to generate several different
summary tables.

For example, if you need to summarize the total salary by department, by skill,
and job, you can make one query to the database and use its results in three
separate queries to generate the summaries.

• You can make drill-down, master-detail-like functionality where you do not go to
the database for the details.

For example, you can select information about departments and employees in a
query and cache the results. You can then display the employee names. When
users select an employee, the application displays the employee details by
selecting information from the cached query without accessing the database.

Creating queries of queries
You can create a query using a query object from any ColdFusion tag or function that
generates query results, including cfldap, cfdirectory, chttp, cfstoredproc,
cfpop, cfindex, and the Query functions.

You can use a limited subset of the SQL SELECT syntax, which includes:

FROM WHERE

GROUP BY UNION

ORDER BY HAVING

AS DISTINCT

Using Query Results in Queries 35
You can also do the following tasks:

• Use the results of one or two queries in your SQL statement.

• Generate computed columns.

Performing a query on a query
To generate a query using an existing query:

• Specify the cfquery tag’s dbtype attribute as "query".

• Do not specify a datasource attribute.

• Specify the names of one or more existing queries as the table names in a SQL
SELECT statement.

• If the database content does not change rapidly, it is a good idea to use the
cachedwithin attribute to cache the query results of between page requests. This
way, ColdFusion accesses the database on the first page request, and does not
query the database again until the specified time expires. Note that you must use
the CreateTimeSpan function to specify the cachedwithin attribute value.

Note
You cannot add a literal value as a column to the SELECT list in a query of queries.

Your query generates a new query results set, identified by the value of the name
attribute. The following example illustrates the use of a master query and a single
detail query that extracts information from the master. A more extended example
would use multiple detail queries to get different information from the same master
query.

Boolean predicates:
LIKE
NOT LIKE
IN
NOT IN
BETWEEN
NOT BETWEEN
AND
OR

Aggregate functions:
Count([DISTINCT][*] expr)
Sum([DISTINCT] expr)
Avg([DISTINCT] expr)
Max(expr)
Min(expr)

You cannot nest aggregate
functions.

Comparison operators:
<=
>=
=
<
>
<>

36 Chapter 3 Querying a Database
To use the results of a query in a query:

1 Create a new application page in ColdFusion Studio.

2 Edit the page so that it appears as follows:

<html>
<head>
<title>Using Query Results in a Query</title>
</head>
<body>
<h1>Employee List</h1>
<!--- LastNameSearch normally would be generated interactively --->
<cfset LastNameSearch = "Jones">
<!--- Normal query --->
<cfquery datasource = "CompanyInfo" name = "EmpList"

cachedwithin=#CreateTimeSpan(0,1,0,0)#>
SELECT *
FROM Employee

</cfquery>

<!--- Query using query results --->
<cfquery dbtype = "query" name = "QueryFromQuery" >

SELECT Emp_ID, FirstName, LastName
FROM EmpList
WHERE LastName = ’#LastNameSearch#’

</cfquery>

Output using a query of query

<cfoutput query = QueryFromQuery>

#Emp_ID#: #FirstName# #LastName#

</cfoutput>

Columns in the Emplist database query

<cfoutput>

#Emplist.columnlist#

</cfoutput>

Columns in the QueryFromQuery query

<cfoutput>

#QueryFromQuery.columnlist#

</cfoutput>
</body>
</html>

3 Save the page as queryquery.cfm in myapps under the Web root directory.

4 Return to your browser and enter the following URL to view the results of the
query:

http://127.0.0.1/myapps/queryquery.cfm

5 View the source in the browser.

Using Query Results in Queries 37
Reviewing the code

The page retrieves the entire Employee table from the CompanyInfo database. A
second query selects only the three columns to display for employees with the
specified last name. The following table describes the code and its function:

Code Description

cfset ListNameSearch = "Jones" Set the last name to use in the second
query. In a complete application, this
information comes from user
interaction.

<cfquery datasource = "CompanyInfo"
name = "EmpList"
cachedwithin=#CreateTimeSpan(0,1,0,0
)#>

SELECT *
FROM Employee

</cfquery>

Query the database specified in the
CompanyInfo data source and select all
data in the Employee table. Cache the
query data between requests to this
page, and do not query the database if
the cached data is less than an hour
old.

<cfquery dbtype = "query" name =
"QueryFromQuery" >

SELECT Emp_ID, FirstName,
LastName

FROM Emplist
WHERE LastName=’#LastNameSearch#’

</cfquery>

Use the EmpList query as the source of
the data in a new query. This query
selects only entries that match the last
name specified by the LastNameSearch
variable. The query also selects only
three columns of data: employee ID,
first name, and last name.

<cfoutput query = QueryFromQuery>
#Emp_ID#: #FirstName#
#LastName#

</cfoutput>

Use the QueryFromQuery query to
display the list of employee IDs, first
names, and last names.

<cfoutput>
#EmpList.columnlist#

</cfoutput>

List all the columns returned by the
Emplist query.

<cfoutput>
#QueryFromQuery.columnlist#

</cfoutput>

List all the columns returned by the
QueryFromQuery query.

38 Chapter 3 Querying a Database

Chapter 4

Retrieving and Formatting Data
This chapter explains how to select the data to display in a dynamic Web page. It also
describes how to populate an HTML table with query results and how to use
ColdFusion functions to format and manipulate data.

Contents

• Using Forms to Specify the Data to Retrieve... 40

• Working with Action Pages ... 45

• Working with Queries and Data ... 49

• Returning Results to the User... 55

40 Chapter 4 Retrieving and Formatting Data
Using Forms to Specify the Data to Retrieve
In the examples in previous chapters, you have retrieved all of the records from a
table. However, there are many instances when you want to retrieve data based on
certain criteria. For example, you might want to see records for everyone in a
particular department, everyone in a particular town whose last name is Smith, or
books by a certain author.

You can use forms in ColdFusion applications to allow users to specify what data
they want to retrieve in a query. When you submit a form, you pass the variables to
an associated page, called an action page, where some type of processing takes
place.

Note
Because forms are standard HTML, the syntax and examples that follow provide you
with just enough detail to begin using ColdFusion.

form tag syntax
Use the following syntax for the create a form tag:

<form action="actionpage.cfm" method="post">
...

</form>

You can override the server request timeout (set on the ColdFusion Administrator
Server Settings page) by adding a RequestTimeout parameter to the action page
URL. The following example specifies a request timeout of two minutes:

Attribute Description

action Specifies an action page to which you pass form variables for
processing.

method Specifies how the variables are submitted from the browser to the
action page on the server. All ColdFusion forms must be submitted
with an attribute setting of method=“post”

Using Forms to Specify the Data to Retrieve 41
<form name="getReportCriteria"
action="runReport.cfm?RequestTimeout=120" method="post">

Form controls
Within the form, you describe the form controls needed to gather and submit user
input. There are a variety of form controls types available. You choose form control
input types based on the type of input the user should provide.

The following table illustrates the format of form control tags:

Control Code

Text control <input type="Text" name="ControlName" size="Value"
maxlength="Value">

Radio buttons <input type="Radio" name="ControlName"
value="Value1">DisplayName1

<input type="Radio" name="ControlName"
value="Value2">DisplayName2

<input type="Radio" name="ControlName"
value="Value3">DisplayName3

List box <select name="ControlName">
<option value="Value1">DisplayName1
<option value="Value2">DisplayName2
<option value="Value3">DisplayName3

</select>

Check box <input type="Checkbox" name="ControlName"
value="Yes|No">Yes

42 Chapter 4 Retrieving and Formatting Data
Use the following procedure to create a sample form.

To create a form

1 Create a new application page, using ColdFusion Studio.

2 Edit the page so that it appears as follows:

<html>
<head>
<title>Input form</title>
</head>
<body>
<!--- define the action page in the form tag. The form variables will

pass to this page when the form is submitted --->

<form action="actionpage.cfm" method="post">

<!-- text box -->
<p>
First Name: <input type="Text" name="FirstName" size="20"

maxlength="35">

Last Name: <input type="Text" name="LastName" size="20"

maxlength="35">

Salary: <input type="Text" name="Salary" size="10" maxlength="10">
</p>

<!-- list box -->
<p>
City
<select name="City">

<option value="Arlington">Arlington
<option value="Boston">Boston
<option value="Cambridge">Cambridge
<option value="Minneapolis">Minneapolis
<option value="Seattle">Seattle

</select>
</p>

<!-- radio buttons -->
<p>
Department:

<input type="radio" name="Department" value="Training">Training

<input type="radio" name="Department" value="Sales">Sales

<input type="radio" name="Department"

value="Marketing">Marketing

</p>

Reset button <input type="Reset" name="ControlName" value="DisplayName">

Submit button <input type="Submit" name="ControlName"
value="DisplayName">

Control Code

Using Forms to Specify the Data to Retrieve 43
<!-- check box -->
<p>
Contractor? <input type="checkbox" name="Contractor" value="Yes"

checked>Yes
</p>

<!-- reset button -->
<input type="Reset" name="ResetForm" value="Clear Form">
<!-- submit button -->
<input type="Submit" name="SubmitForm" value="Submit">

</form>
</body>
</html>

3 Save the page as formpage.cfm within the myapps directory under your Web root
directory.

4 View the form in a browser.

The form appears in the browser.

Remember that you need an action page in order to submit values; you will create
one later in this chapter.

Reviewing the code

The following table describes the highlighted code and its function:.

Code Description

<form action="actionpage.cfm"
method="post">

Gather the information from this form
using the Post method, and do something
with it on the page actionpage.cfm.

<input type="Text" name="FirstName"
size="20" maxlength="35">

Create a text box called FirstName where
users can enter their first name. Make it
20 characters wide, but allow input of up
to 35 characters.

<input type="Text" name="LastName"
size="20" maxlength="35">

Create a text box called LastName where
users can enter their first name. Make it
20 characters wide, but allow input of up
to 35 characters.

<input type="Text" name="Salary"
size="10" maxlength="10">

Create a text box called Salary where
users can enter a salary to look for. Make
it 10 characters wide, and allow input of
up to 10 characters.

44 Chapter 4 Retrieving and Formatting Data
Form notes and considerations
• To make the coding process easy to follow, name form controls the same as

target database fields.

• For ease of use, limit radio buttons to between three and five mutually exclusive
options. If you need more options, consider a drop-down select list.

• Use list boxes to allow the user to choose from many options or to chose multiple
items from a list.

• All the data that you collect on a form is automatically passed as form variables to
the associated action page.

• Check boxes and radio buttons do not pass to action pages unless they are
selected on a form. If you try to reference these variables on the action page, you
receive an error if they are not present.

• You can dynamically populate drop-down select lists using query data. See
“Dynamically Populating List Boxes” on page 82 for details.

<select name="City">
<option value="Arlington">

Arlington
<option value="Boston">Boston
<option value="Cambridge">

Cambridge
<option value="Minneapolis">

Minneapolis
<option value="Seattle">Seattle

</select>

Create a drop-down list box named City
and populate it with the values
“Arlington,” “Boston,” “Cambridge,”
“Minneapolis,” and “Seattle.”

<input type="checkbox" name=
"Contractor" value="Yes|No"
checked>Yes

Create a check box that allows users to
specify whether they want to list
employees who are contractors. Make
the box selected by default.

<input type="Reset"
name="ResetForm" value="Clear
Form">

Create a reset button to allow users to
clear the form. Put the text Clear Form on
the button.

<input type="Submit"
name="SubmitForm" value="Submit">

Create a submit button to send the values
that users enter to the action page for
processing. Put the text Submit on the
button.

Code Description

Working with Action Pages 45
Working with Action Pages
A ColdFusion action page is just like any other application page except that you can
use the form variables that are passed to it from an associated form. The following
sections describe how to create effective action pages.

Processing form variables on action pages
The action page gets a form variable for every form control that contains a value
when the form is submitted.

Note
If multiple controls have the same name, one form variable is passed to the action
page. It contains a comma-delimited list.

A form variable’s name is the name that you assigned to the form control on the form
page. Refer to the form variable by name within tags, functions, and other
expressions on an action page.

Because Form variables extend beyond the local page—their scope is the action
page—prefix them with “Form.” to explicitly tell ColdFusion that you are referring to
a form variable. For example the following code references the LastName form
variable for output on an action page:

<cfoutput>
#Form.LastName#

</cfoutput>

Dynamically generating SQL statements
As you have already learned, you can retrieve a record for every employee in a
database table by composing a query like this:

<cfquery name="GetEmployees" datasource="CompanyInfo">
SELECT FirstName, LastName, Contract
FROM Employee

</cfquery>

But when you want to return information about employees that match user search
criteria, you use the SQL WHERE clause with a SQL SELECT statement to compare a
value against a character string field. When the WHERE clause is processed, it filters
the query data based on the results of the comparison.

For example, to return employee data for only employees with the last name of
Smith, you build a query that looks like this:

<cfquery name="GetEmployees" datasource="CompanyInfo">
SELECT FirstName, LastName, Contract
FROM Employee
WHERE LastName = "Smith"

</cfquery>

46 Chapter 4 Retrieving and Formatting Data
However, instead of putting the LastName directly in the SQL WHERE clause, you
can use the text that the user entered in the form for comparison:

<cfquery name="GetEmployees" datasource="CompanyInfo">
SELECT FirstName, LastName, Salary
FROM Employee
WHERE LastName="#Form.LastName#"

</cfquery>

For more information on Dynamic SQL, see “Dynamic SQL” on page 96.

Creating action pages
Use the following procedure to create an action page for cormpage.cfm.

To create an action page for the form:

1 Create a new application page in ColdFusion Studio.

2 Enter the following code:

<html>
<head>
<title>Retrieving Employee Data Based on Criteria from Form</title>
</head>

<body>
<cfquery name="GetEmployees" datasource="CompanyInfo">

SELECT FirstName, LastName, Salary
FROM Employee
WHERE LastName=’#Form.LastName#’

</cfquery>
<h4>Employee Data Based on Criteria from Form</h4>
<cfoutput query="GetEmployees">
#FirstName#
#LastName#
#Salary#

</cfoutput>

<cfoutput>Contractor: #Form.Contractor#</cfoutput>
</body>
</html>

3 Save the page as actionpage.cfm within the myapps directory.

4 View formpage.cfm in your browser.

5 Enter data, for example, Smith, in the Last Name box and submit the form.

The browser displays a line with the first and last name and salary for each entry
in the database that match the name you typed, followed by a line with the text
“Contractor: Yes”

6 Click Return in your browser to redisplay the form.

7 Remove the check mark from the check box and submit the form again.

Working with Action Pages 47
This time an error occurs because the check box does not pass a variable to the
action page.

Reviewing the code

The following table describes the highlighted code and its function:

Testing for a variable’s existence
Before relying on a variable’s existence in an application page, you can test to see if it
exists using the IsDefined function. A function is a named procedure that takes
input and operates on it. For example, the IsDefined function determines whether a
variable is defined. CFML provides a large number of functions, which are
documented in the CFML Reference.

The following code prevents the error that you saw in the previous example by
checking to see if the Contractor Form variable exists before using it:

<cfif IsDefined("Form.Contractor")>
<cfoutput>Contractor: #Form.Contractor#</cfoutput>

</cfif>

Code Description

<cfquery name="GetEmployees"
datasource="CompanyInfo">

Query the data source CompanyInfo and
name the query GetEmployees.

SELECT FirstName, LastName, Salary
FROM Employee
WHERE LastName=’#Form.LastName#’

Retrieve the FirstName, LastName, and
Salary fields from the Employee table, but
only if the value of the LastName field
matches what the user entered in the
LastName text box in the form on
formpage.cfm.

<cfoutput query="GetEmployees"> Display results of the GetEmployees query.

#FirstName#
#LastName#
#Salary#

Display the value of the FirstName,
LastName, and Salary fields for a record,
starting with the first record, then go to the
next line. Keep displaying the records that
match the criteria you specified in the
SELECT statement, followed by a line break,
until you run out of records.

</cfoutput> Close the cfoutput block.

<cfoutput>Contractor:
#Form.Contractor#</cfoutput>

Display a blank line followed by the text
Contractor: and the value of the form
Contractor check box. A more complete
example would test to ensure the existence of
the variable and would use the variable in the
query.

48 Chapter 4 Retrieving and Formatting Data
The argument passed to the IsDefined function must always be enclosed in double
quotes. For more information on the IsDefined function, see the CFML Reference.

If you attempt to evaluate a variable that you did not define, ColdFusion cannot
process the page and displays an error message. To help diagnose such problems,
use the interactive debugger in ColdFusion Studio or turn on debugging in the
ColdFusion Administrator. The Administrator debugging information shows which
variables are being passed to your application pages.

Form variable notes and considerations
When using form variables, keep the following guidelines in mind:

• A Form variable’s scope is the action page.

• Prefix form variables with "Form." when referencing them on the action page.

• Surround variable values with pound signs (#) for output.

• Check boxes and radio button variables only get passed to the action page if you
select an option. Text boxes pass an empty string if you do not enter text.

• An error occurs if the action page tries to use a variable that has not been passed.

Working with Queries and Data 49
Working with Queries and Data
The ability to generate and display query data is one of the most important and
flexible features of ColdFusion. The following sections further your understanding of
using queries and displaying their results. Some of these tools are effective for
presenting any data, not just query results.

Using HTML tables to display query results
You displayed each row of data from the Employee table, but the information was
unformatted. You can use HTML tables to control the layout of information on the
page. In addition, you can use CFML functions to format individual pieces of data,
such as dates and numeric values.

You can use HTML tables to specify how the results of a query appear on a page. To
do so, you put the cfoutput tag inside the table tags. You can also use the HTML th
tag to put column labels in a header row. To create a row in the table for each row in
the query results, put the tr block inside the cfoutput tag.

To put the query results in a table:

1 Return to the file actionpage.cfm in ColdFusion Studio.

2 Modify the page so that it appears as follows:

<html>
<head>
<title>Retrieving Employee Data Based on Criteia from Form</title>
</head>

<body>
<cfquery name="GetEmployees" datasource="CompanyInfo">

SELECT FirstName, LastName, Salary
FROM Employee
WHERE LastName=’#Form.LastName#’

</cfquery>
<h4>Employee Data Based on Criteria from Form</h4>
<table>
<tr>
<th>First Name</th>
<th>Last Name</th>
<th>Salary</th>
</tr>
<cfoutput query="GetEmployees">
<tr>
<td>#FirstName#</td>
<td>#LastName#</td>
<td>#Salary#</td>
</tr>
</cfoutput>
</table>

<cfoutput>Contractor: #Form.Contractor#</cfoutput>

50 Chapter 4 Retrieving and Formatting Data
</body>
</html>

3 Save the page as actionpage.cfm within the myapps directory.

4 View formpage.cfm in your browser.

5 Enter Smith in the Last Name text box and submit the form.

6 The records that match the criteria specified in the form appear in a table.

Reviewing the code

The following table describes the highlighted code and its function:

Formatting individual data items
You might want to format individual data items. For example, you can format the
Salary field as a monetary value.

To format the Salary using the dollar format, you use the CFML expression
DollarFormat(number).

To change the format of the Salary:

1 Open the file actionpage.cfm in ColdFusion Studio.

2 Change the line

<td>#Salary#</td>

to

<td>#DollarFormat(Salary)#</td>

Code Description

<table> Put data into a table.

<tr>
<th>First Name</th>
<th>Last Name</th>
<th>Salary</th>

</tr>

In the first row of the table, include three
columns, with the headings: First Name, Last
Name, and Salary.

<cfoutput query="GetEmployees"> Get ready to display the results of the
GetEmployees query.

<tr>
<td>#FirstName#</td>
<td>#LastName#</td>
<td>#Salary#</td>

</tr>

Create a new row in the table, with three
columns. For a record, put the value of the
FirstName field, the value of the LastName field,
and the value of the Salary field.

</cfoutput> Keep getting records that matches the criteria,
and display each row in a new table row until you
run out of records.

</table> End of table.

Working with Queries and Data 51
Performing pattern matching
Use the SQL LIKE operator and SQL wildcard strings in a SQL WHERE clause when
you want to compare a value against a character string field so that the query returns
database information based on commonalities. This technique is known as pattern
matching and is often used to query databases.

For example, to return data for employees whose last name starts with AL, you build
a query that looks like this:

<cfquery name="GetEmployees" datasource="CompanyInfo">
SELECT FirstName, LastName,
StartDate, Salary, Contract
FROM Employee
WHERE LastName LIKE ’AL%’

</cfquery>

• The LIKE operator tells the database to use the string that follows for pattern
matching.

• If you place a wildcard before and after AL, you retrieve any record in that
column that contains AL.

• Surround strings in SQL statements with single quotes (’).

To return information from the Departmt table on all departments except the sales
department, you would build a query that looks like this:

<cfquery name="GetDepartments" datasource="CompanyInfo">
SELECT *
FROM Departmt
WHERE Dept_Name NOT LIKE ’[Ss]ales’

</cfquery>

• The first character in the match can be either upper case S or lower case s.

Note
Whether SQL identifiers and data comparison operations are case sensitive depends
on the database.

Filtering data based on multiple conditions
When you want to retrieve data based on the results of more than one comparison
you can use AND and OR operators to combine conditions.

For example, to return data for contract employees who earn more than $50,000,
would build a query that looks like this:

<cfquery name="GetEmployees" datasource="CompanyInfo">
SELECT FirstName, LastName,
StartDate, Salary, Contract
FROM Employee
WHERE Contract = ’Yes’
AND Salary > 50000

</cfquery>

52 Chapter 4 Retrieving and Formatting Data
Creating table joins
Many times, the data that you want to retrieve is maintained in multiple tables. For
example, in the database that you are working with:

• Department information is maintained in the Departmt table. This includes
department ID numbers.

• Employee information is maintained in the Employee table. This also includes
department ID numbers.

To compare and retrieve data from more than one table during a query, use the
WHERE clause to join two tables through common information.

For example, to return employee names, start dates, department names, and salaries
for employees who work for the HR department, you build a query that looks like
this:

<cfquery name="GetEmployees" datasource="CompanyInfo">
SELECT Departmt.Dept_Name,
Employee.FirstName,
Employee.LastName,
Employee.StartDate,
Employee.Salary
FROM Departmt, Employee
WHERE Departmt.Dept_ID = Employee.Dept_ID
AND Departmt.Dept_Name = ’HR’

</cfquery>

In this example, the following criteria joins the two tables:

Departmt.Dept_ID = Employee.Dept_ID

It ensures that each row of the query results contains the department name from the
Departmt table that corresponds to the Department ID in this employee’s row in the
Employee table. Without this statement, the query returns a row for every employee
in the Employee table, and all rows have the Dept_Name HR, even if the employee is
not in the HR department.

When you do table joins, keep the following information in mind:

• Prefix each column in the SELECT statement to explicitly state which table the
data should be retrieved from.

• In this example, the Dept_ID field is the primary key of the Departmt table and
the foreign Key of the Employee table. A foreign key uniquely identifies another
record (in this example, a record in the Departmt table) but does not uniquely
identify the current record (in the Employee table).

Building flexible search interfaces
If you want users to optionally enter multiple search criteria, you can wrap
conditional logic around the SQL AND clause to build a flexible search interface. To
test for multiple conditions, wrap additional cfif tags around additional AND
clauses.

Working with Queries and Data 53
The following action page allows users to search for employees by department, last
name, or both.

To build a more flexible search interface:

1 Open the page actionpage.cfm in ColdFusion Studio.

2 Modify the page so that it appears as follows:

<html>
<head>
<title>Retrieving Employee Data Based on Criteia from Form</title>
</head>
<body>
<cfquery name="GetEmployees" datasource="CompanyInfo">

SELECT Departmt.Dept_Name,
Employee.FirstName,
Employee.LastName,
Employee.StartDate,
Employee.Salary
FROM Departmt, Employee
WHERE Departmt.Dept_ID = Employee.Dept_ID
<cfif IsDefined("FORM.Department")>

AND Departmt.Dept_Name = ’#Form.Department#’
</cfif>
<cfif Form.LastName IS NOT "">

AND Employee.LastName = ’#Form.LastName#’
</cfif>

</cfquery>

<h4>Employee Data Based on Criteria from Form</h4>
<table>
<tr>
<th>First Name</th>
<th>Last Name</th>
<th>Salary</th>
</tr>
<cfoutput query="GetEmployees">
<tr>
<td>#FirstName#</td>
<td>#LastName#</td>
<td>#Salary#</td>
</tr>
</cfoutput>
</table>
</body>
</html>

3 Save the file.

4 View formpage.cfm in your browser.

5 Select a department, optionally enter a last name, and submit the form.

54 Chapter 4 Retrieving and Formatting Data
Reviewing the code

The following table describes the highlighted code and its function:

Code Description

SELECT Departmt.Dept_Name,
Employee.FirstName,
Employee.LastName,
Employee.StartDate,
Employee.Salary
FROM Departmt, Employee
WHERE Departmt.Dept_ID =

Employee.Dept_ID

Retrieve the fields listed from the
Departmt and Employee tables, joining
the tables based on the Dept_ID field in
each table.

<cfif IsDefined("FORM.Department")>
AND Departmt.Dept_Name =

’#Form.Department#’
</cfif>

If the user specified a department on
the form, only retrieve records where
the department name is the same as
the one the user specified. Note that
you need the pound signs in the SQL
AND statement to identify
Form.Department as a ColdFusion
variable, but not in the IsDefined
function.

<cfif Form.LastName IS NOT "">
AND Employee.LastName =
’#Form.LastName#’
</cfif>

If the user specified a last name in the
form, only retrieve the records in which
the last name is the same as the one
the user entered in the form.

Returning Results to the User 55
Returning Results to the User
When you return your results to the user, you must make sure that your pages
respond to the user’s needs and are appropriate for the type and amount of
information. In particular you must consider the following situations:

• When there are no query results

• When you want to return partial results

If there are no query results
Your code must accommodate the cases where a query does not return any records.
To determine whether a search has retrieved records, use the RecordCount query
variable. You can use the variable in a conditional logic expression that determines
how to display search results appropriately to users.

For example, to inform the user when no records were found by the GetEmployees
query, insert the following code before displaying the data:

<cfif GetEmployees.RecordCount IS "0">
No records match your search criteria.

<cfelse>

You mst do the following:

• Prefix RecordCount with the query name.

• Add a procedure after the cfif tag that displays a message to the user.

• Add a procedure after the cfelse tag to format the returned data.

• Follow the second procedure with a </cfif> tag end to indicate the end of the
conditional code.

To return search results to users:

1 Open the page actionpage.cfm in ColdFusion Studio.

2 Change the page so that it appears as follows:

<html>
<head>
<title>Retrieving Employee Data Based on Criteia from Form</title>
</head>

<body>
<cfquery name="GetEmployees" datasource="CompanyInfo">

SELECT Departmt.Dept_Name,
Employee.FirstName,
Employee.LastName,
Employee.StartDate,
Employee.Salary
FROM Departmt, Employee
WHERE Departmt.Dept_ID = Employee.Dept_ID
<cfif isdefined("FORM.Department")>

AND Departmt.Dept_Name = ’#Form.Department#’
</cfif>

56 Chapter 4 Retrieving and Formatting Data
<cfif form.lastname is not "">
AND Employee.LastName = ’#Form.LastName#’

</cfif>
</cfquery>

<cfif GetEmployees.recordcount is "0">
No records match your search criteria.

Please go back to the form and try again.
<cfelse>
<h4>Employee Data Based on Criteria from Form</h4>
<table>
<tr>
<th>First Name</th>
<th>Last Name</th>
<th>Salary</th>
</tr>
<cfoutput query="GetEmployees">
<tr>
<td>#FirstName#</td>
<td>#LastName#</td>
<td>#Salary#</td>
</tr>
</cfoutput>
</cfif>
</table>
</body>
</html>

3 Save the file.

4 Return to the form, enter search criteria and submit the form.

5 If no records match the criteria you specified, the message displays.

Returning results incrementally
You can use the cfflush tag to incrementally output long-running requests to the
browser before a ColdFusion page is fully processed. This allows you to give the user
quick feedback when it takes a long time to complete processing a request. For
example, you can use cfflush to display the message, “Processing your request --
please wait.” when a request takes time to return. You can also use it to
incrementally display a long list as it gets retrieved.

The first time you use the cfflush tag on a page, it sends to the browser all of the
HTML headers and any other available HTML. Subsequent cfflush tags on the page
send only the output that ColdFusion generated since the previous flush.

You can specify an interval attribute to tell ColdFusion to flush the output each
time that at least the specified number of bytes become available. (The count does
not include HTML headers and any data that is already available when you make this
call.) You can use the cfflush tag in a cfloop to incrementally flush data as it
becomes available. This format is particularly useful when a query responds slowly
with large amounts of data.

Returning Results to the User 57
When you flush data, make sure that a sufficient amount of information is available,
because some browsers might not respond if you flush only a very small amount.
Similarly, if you use an interval attribute, set it for a reasonable size, such as a few
hundred bytes or more but not many thousands of bytes.

Caution
After you use the cfflush tag on a page, any CFML function or tag on the page that
modifies the HTML header causes an error. These include the cfcontent,
cfcookie, cfform, cfheader, cfhtmlhead, and cflocation tags. You also get an
error if you use the cfset tag to set a Cookie scope variable. All errors except Cookie
errors can be caught with a cfcatch type="template" tag. Cookie errors can be
caught with cfcatch type="Any".

The following example uses the cfloop tag and the rand() random number
generating function to artificially delay the generation of data for display. It
simulates a situation in which it takes time to retrieve the first data and additional
information becomes available slowly.

<html>
<head>

<title>Your Magic numbers</title>
</head>

<body>
<H1>Your Magic numbers</H1>
<P>It will take us a little while to calculate your ten magic numbers.
It takes a lot of work to find numbers that truly fit your personality.
So relax for a minute or so while we do the hard work for you.</P>
<H2>We are sure you will agree it was worth the short wait!</H2>
<cfflush>

<cfflush interval=10>
<!--- Delay Loop to make is seem harder --->
<cfloop index="randomindex" from="1" to="200000" step="1">

<cfset random=rand()>
</cfloop>

<!--- Now slowly output 10 random numbers --->
<cfloop index="Myindex" from="1" to="10" step="1">

<cfloop index="randomindex" from="1" to="100000" step="1">
<cfset random=rand()>

</cfloop>
<cfoutput>

Magic number number #Myindex# is: #RandRange(100000,
999999)#

</cfoutput>
</cfloop>
</body>
</html>

58 Chapter 4 Retrieving and Formatting Data
Reviewing the code

The following table describes the code and its function:

Code Description

<H2>We are sure you will agree it was
worth the short wait!</H2>

<cfflush>

Send the HTML header and all HTML
output to the cfflush tag to the user.
This displays the explanatory paragraph
and H2 tag contents.

<cfflush interval=10> Flush additional data to the user every
time at least ten bytes are available.

<cfloop index="randomindex" from="1"
to="200000" step="1">

<cfset random=Rand()>
</cfloop>

Insert an artificial delay by using the
Rand function to calculate many random
numbers.

<cfloop index="Myindex" from="1"
to="10" step="1">

<cfloop index="randomindex"
from="1" to="100000" step="1">

<cfset random=rand()>
</cfloop>
<cfoutput>

Magic number number #Myindex#
is: #RandRange
(100000,999999)#

</cfoutput>
</cfloop>

Generate and display ten random
numbers. This code uses two loops. The
outer loop is repeated ten times, once for
each number to display. The inner loop
uses the rand function to create another
delay by generating more (unused)
random numbers. It then calls the
RandRange function to generate a
six-digit random number for display.

Chapter 5

Graphing Data
This chapter explains how to use the cfgraph tag to display graphs. It illustrates ways
that you can graph data and gives you the tools you need to create effective graphs.

The cfgraph tag requires the JRun server and the Macromedia Generator server,
which install with ColdFusion.

Contents

• Creating a Graph ... 60

• Graphing Data ... 62

• Controlling Graph Appearance .. 67

• Linking Dynamically from Graphs... 77

60 Chapter 5 Graphing Data
Creating a Graph
The cfgraph tag provides five graph types. A large number of attributes let you
customize the graph appearance to meet your needs.

Graph types
You can create the following types of graphs:

• Bar

• Horizontal bar

• Line

• Area (a line graph with the area below the line filled in)

• Pie

The following illustrations show one sample of each type of graph:

Creating a Graph 61
Creating a basic graph
You use the following cfgraph attributes to create a basic graph:

You must end your cfgraph tag with a </cfgraph> end tag.

For example, if you have a query that contains average salary by department, the
following tag displays a bar graph with the information:

<cfgraph type="bar"
query="DataTable"
valueColumn="AvgByDept"
itemColumn="Dept_Name">

</cfgraph>

The resulting graph looks like this:

Later sections in this chapter provide information on how you can specify the data
differently and how you can change and enhance graph appearance.

Attribute Description

type Must be one of the following values: bar, horizontalbar, pie, or
line. (An area graph is a kind of line graph.)

query The query containing the data.

valueColumn The query column containing the values to be graphed.

itemColumn (Optional) The query column containing the description for this data
point. The item normally appears on the horizontal axis of bar and
line graphs, and in pie charts.

62 Chapter 5 Graphing Data
Graphing Data
One of the most important considerations when you graph data is the way you
supply the data to the cfgraph tag. You can supply data in several ways:

• Provide all the data in a single query.

• Specify individual data points using cfgraphdata tags.

• Combine data from a query with additional data points from cfgraphdata tags.

Note
The cfgraph tag graphs numeric data only. As a result, you must convert any dates,
times, or preformatted currency values, such as $3,000.53, to integers or real
numbers.

Graphing a query
When you graph a query, you specify the query name in the cfgraph tag query
attribute. In this format the cfgraph tag body is empty. However, you must still
provide the <\cfgraph> end tag. For example, a simple cfgraph tag for a bar chart
might look like this:

<cfgraph type="bar" title="Salaries by Department"
query="DataTable"
itemColumn="Dept_Name"
valueColumn="AvgByDept">

</cfgraph>

This tag displays the values in the AvgByDept column of the DataTable query. It
displays the Dept_Name column value as the item label by each bar. The title
“Salaries by Department” appears above the chart.

The cfgraph tag can take the following information from a query:

Attribute Description

query The query containing the data.

valueColumn The query column containing the values to be graphed.

itemColumn (Optional) The query column containing the description for this data
point. The item normally appears on the horizontal axis of bar and
line graphs, on the vertical axis of horizontal bar graphs, and in the
legend in pie charts.

Graphing Data 63
The ability to use queries of queries, as described in Chapter 3, “Using Query Results
in Queries” on page 34 provides significant power in generating the data for the
chart. For example, you can use aggregating clauses operators such as SUM, AVG,
and GROUP BY to create a query of queries with statistical data based on a raw
database query.

You can also take advantage of the ability to reference and modify query data
dynamically. For example, you can loop through the entries in a query column and
reformat the data to show whole dollar values

Example: graphing a query of queries

The example in the following procedure analyzes the salary data in the CompanyInfo
database and displays three graphs:

To graph a query of queries:

1 Create a new application page in ColdFusion Studio.

2 Edit the page so that it appears as follows:

<!-- Get the raw data from the database. -->
<cfquery name="GetSalaries" datasource="CompanyInfo">

SELECT Departmt.Dept_Name,
Employee.Salary

FROM Departmt, Employee
WHERE Departmt.Dept_ID = Employee.Dept_ID

</cfquery>

URL (Optional) Works only with bar, horizontal bar, and pie charts in
Flash file format.
A static prefix for all data point URLs. When the user clicks a bar or
pie wedge, the page links to a URL created by appending the data
from the data point’s URLColumn value.
Use this attribute to specify a string that is part of all links on a
chart, such as
http://www.mycompany.com/myapp/salary_info/chart_details/.

URLColumn (Optional) Works only with bar, horizontal bar, and pie charts in
Flash file format.
The query column containing the data point–specific part of a URL
to load when the user clicks the corresponding data point the
graph. ColdFusion encodes the contents of the query field, in URL
format (for example, replacing space characters with %20) and
appends it to any static URL string in the URL attribute to create a
full URL link.
Use this attribute to do data drill-down from your charts.
For more information on using URLs in graphs, see “Linking
Dynamically from Graphs,” on page 77.

Attribute Description

64 Chapter 5 Graphing Data
<!-- Generate a query with statistical data for each department. -->
<cfquery dbtype = "query" name = "DeptSalaries">

SELECT
Dept_Name,
AVG(Salary) AS AvgByDept

FROM GetSalaries
GROUP BY Dept_Name

</cfquery>

<!--- Reformat the generated numbers to show only thousands --->
<cfloop index="i" from="1" to="#DeptSalaries.RecordCount#">

<cfset DeptSalaries.AvgByDept[i]=Round(DeptSalaries.AvgByDept[i]/
1000)*1000>

</cfloop>

<html>
<head>

<title>Employee Salary Analysis</title>
</head>

<body>
<h1>Employee Salary Analysis</h1>

<!--- Bar graph, from DeptSalaries Query of Queries --->
<cfgraph type="bar"

query="DeptSalaries"
valueColumn="AvgByDept"
itemColumn="Dept_Name">

</cfgraph>

</body>
</html>

3 Save the page as graphdata.cfm in myapps under the Web root directory. For
example, the directory path on your machine might be:

C:\Inetpub\wwwroot\myapps on Windows NT

4 Return to your browser and enter the following URL to view graphdata.cfm:

http://127.0.0.1/myapps/graphdata.cfm

Graphing Data 65
Reviewing the code

The following table describes the code and its function:

Graphing individual data points
When you graph individual data points you specify each data point by putting a
cfgraphdata tag in the cfgraph tag body. For example, the following code creates a
simple pie chart:

<cfgraph type="pie" title="Income by Department">
<cfgraphdata item="New Vehicle Sales" value=500000>
<cfgraphdata item="Used Vehicle Sales" value=250000>
<cfgraphdata item="Leasing" value=300000>
<cfgraphdata item="Service" value=400000>

</cfgraph>

Code Description

<cfquery name="GetSalaries"
datasource="CompanyInfo">

SELECT Departmt.Dept_Name,
Employee.Salary

FROM Departmt, Employee
WHERE Departmt.Dept_ID =

Employee.Dept_ID
</cfquery>

Query the CompanyInfo database to
get the Dept_Name and Salary for
each employee. Because the
Dept_Name is in the Departmt table
and the Salary is in the Employee
table, you need a table join in the
WHERE clause. The raw results of
this query could be used elsewhere
on the page.

<cfquery dbtype = "query" name =
"DeptSalaries">

SELECT
Dept_Name,
AVG(Salary) AS AvgByDept

FROM GetSalaries
GROUP BY Dept_Name

</cfquery>

Generate a new query from the
GetSalaries query. Use the AVG
aggregating function to get statistical
data on the employees. Use the
GROUP BY statement to ensure that
there is only one row for each
department.

<cfloop index="i" from="1"
to="#DeptSalaries.RecordCount#">

<cfset DeptSalaries.AvgByDept[i]=
Round(DeptSalaries.AvgByDept[i]
/1000)*1000>

</cfloop>

Loop through all the rows in
DeptSalaries query and round the
salary data to the nearest thousand.
This loop uses the query variable
RecordCount to get the number of
rows and changes the contents of the
query object directly.

<cfgraph type="bar"
query="DeptSalaries"
valueColumn="AvgByDept"
itemColumn="Dept_Name"
>
</cfgraph>

Create a bar graph using the data
from the AvgByDept column of the
DeptSalaries query. Label the bars
with the Department names.

66 Chapter 5 Graphing Data
This pie chart displays the income values of four departments. Each cfgraph tag
specifies a department’s income and the corresponding item description for the
legend. The values are specified by individual ColdFusion variables. The title
“Income by Department” appears above the chart.

The cfgraphdata tag lets you specify the following information about a data point:

Combining a query and data points
To graph data from both query and individual data value, you specify the query
name and related attributes in the cfgraph tag and provide the additional data
points and their appearance attributes in cfgraphdata tags.

Data specified by a cfgraphdata tag is graphed before (for example, to the left on a
bar chart) the data from a query.

For example, if the database is missing data for one department, you can add the
information manually:

<cfgraph type="bar" title="Salaries by Department" query="DataTable"
itemColumn ="Dept_Name" valueColumn="AvgByDept"

<cfgraphdata item="Facilities" value="35000">
</cfgraph>

Attribute Description

value The data value to be graphed.

item (Optional) The description for this data point. The item normally
appears on the horizontal axis of bar and line graphs, on the
vertical axis of horizontal bar graphs, and in the legend in pie
charts.

color (Optional) The color of the bar or pie slice. Ignored for line and area
graphs.

URL (Optional) Works only with bar, horizontal bar, and pie charts in
Flash file format.
A URL to load when the user clicks this data point. Use this
attribute to do data drill-down from your charts.
For more information on using URLs in graphs, see “Linking
Dynamically from Graphs,” on page 77.

Controlling Graph Appearance 67
Controlling Graph Appearance
The cfgraph tag allows you to customize the appearance of your graph in many
ways.

Common graph characteristics
You can optionally specify the following characteristics on all types of graphs:

Graph
characteristic Attributes used Description

Title title
titleFont

The title to display on the graph and the font to
use.

File Type fileFormat Whether to send the graph to the user as a jpeg
or Flash (.swf) file. Flash is the default format.
On pie and bar charts, Flash supports rollover
display of data values and data drill-down by
clicking on the data point (using the URLColumn
attribute).

Dimensions graphWidth
graphHeight

The width and height in pixels of the graph. This
size defines the entire graph area, including the
legend and background area around the graph.
You cannot use these attributes to change the
ratio of the data area height to width. For
example, you cannot set a large graphWidth
value to stretch just the horizontal dimension. To
change the overall graph size, specify both the
graphHeight and graphWidth.

Background backgroundColor The background color to use for the entire graph
area, including legends and margins. You can
specify any of the standard 256 Web colors. You
can use any valid HTML color format. If you use
the numeric format, you must use double pound
signs, for example, ##CCFFFF.

Border borderWidth
borderColor

The border that surrounds the graph. You specify
the width in pixels and the color using any valid
HTML color format, as described for the
backgroundColor. A value of 0 means no
border.

3D
Appearance

depth The depth of the shading that gives the graph
three-dimensional appearance, in pixels. A value
of 0 (the default) means no 3D appearance.

68 Chapter 5 Graphing Data
Setting bar and horizontal bar chart characteristics
You can specify the following additional characteristics for bar and horizontal bar
charts:

Graph
characteristic Attributes used Description

Value labels showValueLabel
valueLabelFont
valueLabelSize
valueLocation

Labels that display the numeric value being
graphed.
By default, value labels are on. You can turn
them off or have them display when the user
points to the bar (Flash file format only). You
can specify the font type (Arial, Courier, or
Times), point size, and location (OnBar or
OverBar).

Value axis scaleFrom
scaleTo

The minimum and maximum points on the
data axis (vertical axis for bar charts,
horizontal axis for horizontal bar charts.
By default the minimum is 0 and the
maximum is the largest data value.

Grid lines gridLines The number of grid lines between the top and
bottom of the graph.

The value of each grid line appears along the
value axis. The cfgraph tag displays
horizontal grids only. A value of 0 (the
default) means no grid lines.

Item labels showItemLabel
itemLabelFont
itemLabelSize
itemLabelOrientation

Labels to show on the second axis of the
chart.

Item labels are on by default if you specify an
itemColumn (or for cfgraphdata tags, item)
attribute. You can specify the label font type
(Arial, Courier, or Times), point size, and
orientation (horizontal or vertical).

Controlling Graph Appearance 69
Example: adding character to a bar graph

The example in the following procedure adds a title to the bar graph and changes its
appearance from the default, flat look, to a 3D look. It adds gridlines, sets the
maximum Y-axis value to 100000, separates the bars, and uses a custom set of colors.

To enhance the bar graph:

1 Open graphdata.cfm in ColdFusion Studio.

2 Edit the cfgraph tag so that it appears as follows:

<!--- Bar graph, from Query of Queries --->
<cfgraph type="bar"

query="DeptSalaries"
valueColumn="AvgByDept"
itemColumn="Dept_Name"
title = "Average Salary by Department"
depth = 10
scaleTo = 100000
itemLabelSize=16
itemLabelOrientation="horizontal"
colorList = "red,orange,green,teal,purple"
gridLines = 4
barSpacing = 15>

</cfgraph>

3 Save the page.

Data point
colors

colorList A comma-separated list of colors to use for
each bar.
You can use any of the 256 standard Web
colors and any valid Web color name
notation (for example, blue or ##FF33CC).
You must use double pound signs with
hexadecimal color notation. These colors
replace the standard system-defined colors.
If you specify fewer colors than data points,
the colors repeat. If you specify more colors
than data points, the extra colors are not
used.

Bar spacing barSpacing The space, in pixels, between bars.
Any 3D shadow specified by the depth
attribute appears in this space, so if you want
the background to appear between all bars,
make the barSpacing value greater than the
depth value.

Graph
characteristic Attributes used Description

70 Chapter 5 Graphing Data
4 Return to your browser and enter the following URL to view graphdata.cfm:

http://127.0.0.1/myapps/graphdata.cfm

Reviewing the code

The following table describes the highlighted code and its function:

Code Description

title = "Average Salary by
Department"

Put a title above the graph.

depth = 10 Give the graph 10 pixels of 3D "depth"
shadow.

scaleTo = 100000 Set the maximum value of the vertical axis
to 100000. The minimum value is the
default, 0.

itemLabelSize=16 Make the labels on the horizontal axis 16
points.

itemLabelOrientation="horizontal" Make the labels horizontal on the horizontal
axis.

colorList = "red,orange,
green,teal,purple"

Get the bar colors from a custom list. In this
example, the graph does not use purple
because there are only four data points.

gridLines = 4 Display four grid lines between the top and
bottom of the graph.

barSpacing = 15 Separate the bars by 15 pixels of
background.

Controlling Graph Appearance 71
Setting pie chart characteristics
You can specify the following additional characteristics for pie charts:

Graph
characteristic Attributes used Description

Value labels showValueLabel
valueLabelFont
valueLabelSize
valueLocation

Labels that display the numeric value being
graphed.
Value labels are on by default. You can turn
them off or have them display when the user
points to the bar (Flash file format only). You
can specify the font type (Arial, Courier, or
Times), point size, and location (OnBar or
OverBar).

Legend showLegend
legendFont

A legend relating the pie slice colors to the
data point Item descriptions from the
itemColumn attribute or cfgraphdata tag
itemColumn attribute.
By default the legend appears to the left of
the chart. You can also specify above, below,
right, and none. You can specify the font type
as Arial (the default), Courier, or Times.

Data point
colors

colorList A comma separated list of colors to use for
each bar.
You can use any of the 256 standard Web
colors and any valid Web color name
notation (for example, blue or ##FF33CC).
You must use double pound signs with
hexadecimal color notation. These colors
replace the standard system-defined colors.

If you specify fewer colors than data points,
the colors repeat. If you specify more colors
than data points, the extra colors are not
used.

72 Chapter 5 Graphing Data
Example: adding a pie chart

The example in the following procedure adds a pie chart to the page.

To create a pie chart:

1 Open graphdata.cfm in ColdFusion Studio.

2 Edit the DeptSalaries query and the cfloop code so that they appear as follows:

<!--- A query to get statistical data for each department. --->
<cfquery dbtype = "query" name = "DeptSalaries">

SELECT
Dept_Name,
SUM(Salary) AS SumByDept,
AVG(Salary) AS AvgByDept

FROM GetSalaries
GROUP BY Dept_Name

</cfquery>

<!--- Reformat the generated numbers to show only thousands --->
<cfloop index="i" from="1" to="#DeptSalaries.RecordCount#">

<cfset DeptSalaries.SumByDept[i]=Round(DeptSalaries.SumByDept[i]/
1000)*1000>

<cfset DeptSalaries.AvgByDept[i]=Round(DeptSalaries.AvgByDept[i]/
1000)*1000>

</cfloop>

3 Add the following cfgraph tag before the end of the body:

<!--- Pie graph, from DeptSalaries Query of Queries --->
<cfgraph type="pie"

query="DeptSalaries"
valueColumn="SumByDept"
itemColumn="Dept_Name"
title="Total Salaries by Department"
titleFont="Times"
showValueLabel="rollover"
valueLabelFont="Times"
borderWidth = 0
backgroundColor = "##CCFFFF"
colorlist="##6666FF,##66FF66,##FF6666,##66CCCC"
LegendFont="Times">

</cfgraph>

4 Save the page.

5 Return to your browser and enter the following URL to view graphdata.cfm:

http://127.0.0.1/myapps/graphdata.cfm

Controlling Graph Appearance 73
Reviewing the code

The following table describes the highlighted code and its function:

Code Description

SUM(Salary) AS SumByDept, In the DeptSalaries query, add a SUM
aggregation function to get the sum of all
salaries per department.

<cfset DeptSalaries.SumByDept[i]=
Round(DeptSalaries.SumByDept[i]/
1000)*1000>

In the cfloop, round the salary sums to
the nearest thousand.

<cfgraph type="pie"
query="DeptSalaries"
valueColumn="SumByDept"

Create a pie graph using the SumByDept
salary sum values from the DeptSalares
query.

itemColumn="Dept_Name" Use the contents of the Dept_Name
column for the item labels displayed in the
chart legend.

title="Total Salaries by
Department"

titleFont="Times"

Put a title above the graph.

Format it in Times font.

showvalue="rollover"
valueLabelFont="Times"

Display the data value, in Times font, only
when the user points to a pie slice.

borderWidth = 0 Do not put a border around the chart

backgroundColor = "##CCFFFF"
colorList = "##6666FF,##66FF66,

##FF6666,##66AAAA"

Set the background for the entire chart
area to a light blue.
Get the pie slice colors from a custom list,
which uses hexadecimal color numbers.
The double pound signs prevent
ColdFusion from trying to interpret the
color data as variable names.

LegendFont="Times" Use Times font for the legend.

74 Chapter 5 Graphing Data
Setting line and area graph characteristics
You can specify the following additional characteristics for line-based graphs

Example: adding an area graph

The example in the following procedure adds an area graph showing the average
salary by start date to the salaries analysis page. It shows the use of a second query of
queries to generate a new analysis of the raw data from the GetSalaries query; in this
example, the average salary by start date. It also shows the use of additional cfgraph
attributes.

To create an area graph:

1 Open graphdata.cfm in ColdFusion Studio.

Graph
characteristic Attributes used Description

Value axis scaleFrom
scaleTo

The minimum and maximum points on the
vertical axis.
By default the minimum is 0 and the
maximum is the largest data value.

Item labels showItemLabel
itemLabelFont
itemLabelSize
itemLabelOrientation

Labels to show on the horizontal axis of the
chart.
By default, item labels are on if you specify
an itemColumn (or for cfgraphdata tags,
item) attribute. You can specify the label font
type (Arial, Courier, or Times), point size, and
orientation (horizontal or vertical).

Line
characteristics

lineColor
lineWidth

These attributes specify the line format.
For the line color, you can use any of the 256
standard Web colors and any valid Web color
name notation (for example, blue or
##FF33CC). You must use double pound
signs with hexadecimal color notation. The
default line color is blue.

You can also specify the line width in pixels.
The default is 1 pixel.

Area fill fill Specifies whether to fill the area below the
line with the line color to form an area graph
By default there is no fill.

Grid lines gridLines The number of grid lines between the top and
bottom of the graph. The value of each grid
line appears along the value axis. The
cfgraph tag displays horizontal grids only. A
value of 0 (the default) means no grid lines.

Controlling Graph Appearance 75
2 Edit the GetSalaries query so that it appears as follows:

<!-- Get the raw data from the database. -->
<cfquery name="GetSalaries" datasource="CompanyInfo">

SELECT Departmt.Dept_Name,
Employee.StartDate,
Employee.Salary

FROM Departmt, Employee
WHERE Departmt.Dept_ID = Employee.Dept_ID

</cfquery>

3 Add the following code before the html tag:

<!--- Convert start date to start year. --->
<!--- You must explicitly convert the date to a number for the query

to work --->
<cfloop index="i" from="1" to="#GetSalaries.RecordCount#">
<cfset GetSalaries.StartDate[i]=NumberFormat(DatePart("yyyy",

GetSalaries.StartDate[i]) ,9999)>
</cfloop>

<!--- Query of Queries for average salary by start year --->
<cfquery dbtype = "query" name = "HireSalaries">

SELECT
StartDate,
AVG(Salary) AS AvgByStart

FROM GetSalaries
GROUP BY StartDate

</cfquery>

<!--- Round average salaries to thousands --->
<cfloop index="i" from="1" to="#HireSalaries.RecordCount#">

<cfset
HireSalaries.AvgByStart[i]=Round(HireSalaries.AvgByStart[i]/
1000)*1000>

</cfloop>

4 Add the following cfgraph tag before the end of the body tag block.

<!--- Area-style Line graph, from HireSalaries Query of Queries --->
<cfgraph type="line"

query="HireSalaries"
valueColumn="AvgByStart"
itemColumn="StartDate"
title="Average Salaries by Date of Hire"
fileFormat="Flash"
GraphWidth=400
BackgroundColor="##FFFF00"
Depth=5
lineColor="teal"
fill="yes" >

</cfgraph>

5 Save the page.

76 Chapter 5 Graphing Data
6 Return to your browser and enter the following URL to view graphdata.cfm:

http://127.0.0.1/myapps/graphdata.cfm

Reviewing the code

The following table describes the highlighted code and its function:

Code Description

Employee.StartDate, Add the employee start date to the data
in the GetSalaries query.

<cfloop index="i" from="1"
to="#GetSalaries.RecordCount#">

<cfset GetSalaries.StartDate[i]=
NumberFormat(DatePart("yyyy",
GetSalaries.StartDate[i]) ,9999)>

</cfloop>

Use a cfloop to extract the year of hire
from each employee’s hire data and
convert the result to a four-digit number.

<cfquery dbtype = "query" name =
"HireSalaries">

SELECT
StartDate,
AVG(Salary) AS AvgByStart

FROM GetSalaries
GROUP BY StartDate

</cfquery>

Create a second query from the
GetSalaries query. This query contains
the average salary for each start year.

<cfloop index="i" from="1"
to="#HireSalaries.RecordCount#">

<cfset HireSalaries.AvgByStart[i]
=Round(HireSalaries.AvgByStart[i]
/1000)*1000>

</cfloop>

Round the salaries to the nearest
thousand.

<cfgraph type="line"
query="HireSalaries"
valueColumn="AvgByStart"
itemColumn="StartDate"

Create a line graph using the
HireSalaries query. Graph the average
salaries against the start date.

title="Average Salaries by
Date of Hire"

Title the graph.

fileFormat="Flash" Send the graph to the user as a Flash
file.

GraphWidth=400 Limit the graph width to 400 pixels.
Generator automatically resizes the
graph’s height to maintain the aspect
ratio.

BackgroundColor="##FFFF00"
Depth=5
lineColor="teal"

Display a 3D graph in teal against a
yellow background.

fill="yes" Fill the region below the graph to create
an area graph.

Linking Dynamically from Graphs 77
Linking Dynamically from Graphs
You can make Flash-format bar and pie charts interactive so that ColdFusion
displays a new data point–specific Web page when the user clicks a bar or pie wedge.
ColdFusion provides two methods for specifying the destination page:

• For data points from queries, ColdFusion takes the value of the cfgraph URL
attribute, appends the value of the query column specified by the URLColumn
attribute, and sends the resulting Web request.

• For data points from cfgraphdata tags, ColdFusion uses the value of the tag’s
URL attribute as the page to link to.

Using ColdFusion you can combine a static URL component with a query column
component. This lets you link dynamically based on query column data without
having to format the column contents as a URL. For example, you can use the values
of the Dept_Name field in the CompanyInfo database to determine the data to
display. To do this, follow these guidelines:

• In the cfgraph tag, specify a single Web page in the URL attribute.

• In the URL attribute, include the name of a parameter, but not its value, in the
form ParameterName=

• In the URLColumn attribute, specify a query column that contains the value of the
parameter being passed.

• In the target page, determine the data to be displayed based on the parameter
that gets passed.

The example code in the following procedure illustrates this technique.

Example: dynamically linking from a pie chart

In the following example, when you click a pie wedge, ColdFusion displays a table
containing the detailed salary information for the departments represented by the
wedge. The example is divided into two parts: creating the detail page and making
the graph dynamic.

Part 1: Creating the detail page

1 Create a new application page in ColdFusion Studio.

This page displays the drill-down information on the selected department based
on the department name passed as the URL parameter.

2 Edit the page so that it appears as follows:

<cfquery name="GetSalaryDetails" datasource="CompanyInfo">
SELECT Departmt.Dept_Name,

Employee.FirstName,
Employee.LastName,
Employee.StartDate,
Employee.Salary,
Employee.Contract

FROM Departmt, Employee
WHERE Departmt.Dept_Name = ’#URL.Dept_Name#’
AND Departmt.Dept_ID = Employee.Dept_ID

78 Chapter 5 Graphing Data
ORDER BY Employee.LastName, Employee.Firstname
</cfquery>

<html>
<head>

<title>Employee Salary Details</title>
</head>

<body>

<h1><cfoutput>#GetSalaryDetails.Dept_Name[1]# Department
Salary Details</cfoutput></h1>

<table border cellspacing=0 cellpadding=5>
<tr>

<th>Employee Name</td>
<th>StartDate</td>
<th>Salary</td>
<th>Contract?</td>

</tr>
<cfoutput query="GetSalaryDetails" >
<tr>

<td>#FirstName# #LastName#</td>
<td>#dateFormat(StartDate, "mm/dd/yyyy")#</td>
<td>#numberFormat(Salary, "$999,999")#</td>
<td>#Contract#</td>

</tr>
</cfoutput>
</table>
</body>
</html>

3 Save the page as Salary_details.cfm in myapps under the Web root directory.

Linking Dynamically from Graphs 79
Reviewing the code

The following table describes the code and its function:

Part 2: Making the graph dynamic

1 Open graphdata.cfm in ColdFusion Studio.

2 Edit the cfgraph tag for the pie chart so it appears as follows:

<cfgraph type="pie"
query="DeptSalaries"
valueColumn="SumByDept"
itemColumn="Dept_Name"
URL="Salary_Details.cfm?Dept_Name="
URLColumn="Dept_Name"

Code Description

<cfquery name="GetSalaryDetails"
datasource="CompanyInfo">

SELECT
Departmt.Dept_Name,
Employee.FirstName,
Employee.LastName,
Employee.StartDate,
Employee.Salary,
Employee.Contract

FROM Departmt, Employee
WHERE

Departmt.Dept_Name =
’#URL.Dept_Name#’

AND Departmt.Dept_ID =
Employee.Dept_ID

ORDER BY Employee.LastName,
Employee.Firstname

</cfquery>

Get the salary data for the
department whose name
was passed in the URL
parameter string. Sort the
data by the employee’s last
and first names.

<table border cellspacing=0 cellpadding=5>
<tr>

<th>Employee Name</td>
<th>StartDate</td>
<th>Salary</td>
<th>Contract?</td>

</tr>
<cfoutput query="GetSalaryDetails" >
<tr>

<td>#FirstName# #LastName#</td>
<td>#dateFormat(StartDate,

"mm/dd/yyyy")#</td>
<td>#numberFormat(Salary, "$999,999")#</td>
<td>#Contract#</td>

</tr>
</cfoutput>
</table>

Display the data retrieved
by the query as a table.
Format the start date into
standard month/date/year
format, and format the
salary with a leading dollar
sign comma separator, and
no decimal places.

80 Chapter 5 Graphing Data
title="Total Salaries by Department"
titleFont="Times"
showValueLabel="rollover"
valueLabelFont="Times"
backgroundColor = "##CCFFFF"
borderWidth = 0
colorlist="##6666FF,##66FF66,##FF6666,##66CCCC"
LegendFont="Times">

</cfgraph>

3 Save the page.

4 Return to your browser and enter the following URL to view graphdata.cfm:

http://127.0.0.1/myapps/graphdata.cfm. Click the slices of the pie chart.

Reviewing the code

The following table describes the highlighted code and its function:

Code Description

URL="Salary_Details.cfm?
Dept_Name="

When the user clicks a data point, call the
Salary_Details.cfm page in the current directory,
and pass it the parameter named Dept_Name.
The parameter value must come from the
URLColumn attribute.

URLColumn="Dept_Name" Complete the URL string with the value from the
query Dept_Name field. So, if the Dept_Name is
HR, ColdFusion calls the following URL:
Salary_Details.cfm?Dept_Name=HR

Chapter 6

Making Variables Dynamic
This chapter explains how to use CFML to dynamically populate forms and
dynamically generate SQL. It also discusses ways to make sure that variables exist
and have valid data because this information is important to effectively use dynamic
data.

Contents

• Dynamically Populating List Boxes ... 82

• Creating Dynamic Check Boxes and Multiple-Selection List Boxes 84

• Ensuring that Variables Exist.. 88

• Validating Data Types ... 90

• Dynamic SQL... 96

82 Chapter 6 Making Variables Dynamic
Dynamically Populating List Boxes
In Chapter 4, you hard-coded a form’s list box options. Instead of manually entering
the information on a form, you can dynamically populate a list box with database
fields. When you code this way, the form page automatically reflects the changes that
you make to the database.

You use two tags to dynamically populate a list box:

• Use the cfquery tag to retrieve the column data from a database table.

• Use the cfoutput tag with the query attribute within the select tag to
dynamically populate the options of this form control.

To dynamically populate a list box:

1 Open the file formpage.cfm in ColdFusion Studio.

2 Modify the file so that it appears as follows:

<html>
<head>
<title>Input form</title>
</head>
<body>
<cfquery name="GetDepartments" datasource="CompanyInfo">
SELECT DISTINCT Location
FROM Departmt
</cfquery>

<!--- Define the action page in the form tag.
The form variables will pass to this page
when the form is submitted --->

<form action="actionpage.cfm" method="post">

<!-- text box -->
<p>
First Name: <input type="Text" name="FirstName" size="20"

maxlength="35">

Last Name: <input type="Text" name="LastName" size="20"

maxlength="35">

Salary: <input type="Text" name="Salary" size="10" maxlength="10">
</p>

<!-- list box -->
City

<select name="City">
<cfoutput query="GetDepartments">
<option value="#GetDepartments.Location#">
#GetDepartments.Location#
</option>
</cfoutput>
</select>

Dynamically Populating List Boxes 83
<!-- radio buttons -->
<p>
Department:

<input type="radio" name="Department" value="Training">Training

<input type="radio" name="Department" value="Sales">Sales

<input type="radio" name="Department"

value="Marketing">Marketing

<input type="radio" name="Department" value="HR">HR

</p>

<!-- check box -->
<p>
Contractor? <input type="checkbox" name="Contractor" value="Yes"

checked>Yes
</p>

<!-- reset button -->
<input type="reset" name="ResetForm" value="Clear Form">

<!-- submit button -->
<input type="submit" name="SubmitForm" value="Submit">
</form>
</body>
</html>

3 Save the page as formpage.cfm.

4 View formpage.cfm in a browser.

The changes that you just made appear in the form.

Remember that you need an action page to submit values.

Reviewing the code

The following table describes the highlighted code and its function:

Code Description

<cfquery name="GetDepartments"
datasource="CompanyInfo">
SELECT DISTINCT Location
FROM Departmt
</cfquery>

Get the locations of all departments in
the Departmt table. The DISTINCT
clause eliminates duplicate location
names from the returned query results.

<select name="City">
<cfoutput query="GetDepartments">
<option
value="#GetDepartments.Location#">
#GetDepartments.Location#
</option>
</cfoutput>
</select>

Populate the City selection list from the
Location column of the GetDepartments
query. The control has one option for
each row returned by the query.

84 Chapter 6 Making Variables Dynamic
Creating Dynamic Check Boxes and Multiple-Selection
List Boxes

When an HTML form contains either a list of check boxes with the same name or a
multiple-selection list box (that is, where users can select multiple items from the
list), the user’s entries are made available as a comma-delimited list with the selected
values. These lists can be very useful for a wide range of inputs.

Note
If the user does not select a check box or make a selection from a list box, no variable
is created. The cfinsert and cfupdate tags do not work correctly if there are no
values. To correct this problem, make the form fields required, use Dynamic SQL, or
use cfparam to establish a default value for the form field. For more information, see
the “Ensuring that Variables Exist” and “Dynamic SQL” sections later in this chapter.

Check boxes
When you put a series of check boxes with the same name in an HTML form, the
variable that is created contains a comma-delimited list of values. The values can be
either numeric values or alphanumeric strings. These two types of values are treated
slightly differently.

Searching numeric values

Suppose you want a user to select one or more departments using check boxes. You
then query the database to retrieve detailed information on the selected
department(s). The code for a simple set of check boxes that lets the user select
departments looks like this:

<input type="checkbox"
name="SelectedDepts"
value="1">
Training

<input type="checkbox"
name="SelectedDepts"
value="2">
Marketing

<input type="checkbox"
name="SelectedDepts"
value="3">
HR

<input type="checkbox"
name="SelectedDepts"
value="4">
Sales

</html>

Creating Dynamic Check Boxes and Multiple-Selection List Boxes 85
The user sees the name of the department, but the value attribute of each check box
is a number that corresponds to the underlying database primary key for the
department’s record.

If the user checks the Marketing and Sales items, the value of the SelectedDept form
field is "2,4" and you use the SelectedDepts in the following SQL statement:

SELECT *
FROM Departmt
WHERE Dept_ID IN (#Form.SelectedDepts#)

The ColdFusion Server sends the following statement to the database:

SELECT *
FROM Departmt
WHERE Dept_ID IN (2,4)

Searching string values

To search for a database field containing string values (instead of numeric), you must
modify the checkbox and cfquery syntax.

The first example searched for department information based on a numeric primary
key field called Dept_ID. Suppose, instead, that the primary key is a database field
called Dept_Name that contains string values. In that case, your code for check
boxes should look like this:

<input type="checkbox"
name="SelectedDepts"
value="Training">
Training

<input type="checkbox"
name="SelectedDepts"
value="Marketing">
Marketing

<input type="checkbox"
name="SelectedDepts"
value="HR">
HR

<input type="checkbox"
name="SelectedDepts"
value="Sales">
Sales

If the user checked Marketing and Sales, the value of the SelectedDepts form field
would be the list Marketing,Sales.

SELECT *
FROM Departmt
WHERE Dept_Name IN
(#ListQualify(Form.SelectedDepts,"’")#)

86 Chapter 6 Making Variables Dynamic
Note
In SQL, all strings must be surrounded in single quotes. The ListQualify function
returns a list with the specified qualifying character (here, a single quote) around
each item in the list.

If you select the second and fourth check boxes in the form, the following statement
gets sent to the database:

SELECT *
FROM Departmt
WHERE Dept_Name IN (’Marketing’,’Sales’)

Multiple selection lists
ColdFusion treats the result when a user selects multiple choices from a list box
(HTML input type select with attribute multiple) just like results of selecting
multiple check boxes. The data made available to your page from any multiple
selection list box is a comma-delimited list of the entries selected by the user; for
example, a list box could contain the four entries: Training, Marketing, HR, and
Sales. If the user selects Marketing and Sales, the form field variable value is
Marketing,Sales.

You use multiple selection lists to search a database in the same way that you use
check boxes.

Searching numeric values

Suppose you want the user to select departments from a multiple-selection list box.
The query retrieves detailed information on the selected department(s):

Select one or more companies to get more information on:
<select name="SelectDepts" multiple>

<option value="1">Training
<option value="2">Marketing
<option value="3">HR
<option value="4">Sales

</select>

If the user selects the Marketing and Sales items, the value of the SelectDepts form
field is 2,4.

If this parameter is used in the following SQL statement:

SELECT *
FROM Departmt
WHERE Dept_ID IN (#form.SelectDepts#)

the following statement is sent to the database:

SELECT *
FROM Departmt
WHERE Dept_ID IN (2,4)

Creating Dynamic Check Boxes and Multiple-Selection List Boxes 87
Searching string values

Suppose you want the user to select departments from a multiple selection list box.
The database search field is a string field. The query retrieves detailed information
on the selected department(s):

<select name="SelectDepts" multiple>
<option value="Training">Training
<option value="Marketing">Marketing
<option value="HR">HR
<option value="Sales">Sales

</select>

If the user selects the Marketing and Sales items, the SelectDepts form field value is
Marketing,Sales.

Just as you did when using check boxes to search database fields containing string
values, use the ColdFusion ListQualifyfunction with multiple-selection list boxes:

SELECT *
FROM Departmt
WHERE Dept_Name IN (#ListQualify(Form.SelectDepts,"’")#)

The following statement gets sent to the database:
SELECT *

FROM Departmt
WHERE Dept_Name IN (’Marketing’,’Sales’)

88 Chapter 6 Making Variables Dynamic
Ensuring that Variables Exist
The sample code in the previous sections is incomplete. Either the form or the action
page should make sure that the SelectDepts variable has a value before it is used in
the SQL Select statement. Otherwise, users who do not select any department get an
error message. There are several ways to ensure that a variable exists before you use
it:

• You can use the IsDefined function, as described in the section “Testing for a
variable's existence,” in Chapter 4.

• You can use the cfparam tag to test for a variable and set it to a default value if it
does not exist.

• You can use a form input tag with a hidden attribute to tell ColdFusion to display
a helpful message to any user who does not enter data in a required field.

Using cfparam to test for variables and set default values
One way to ensure a variable exists is to use the cfparam tag, which tests for the
variable’s existence and optionally supplies a default value if the variable does not
exist. The following code shows the syntax of the cfparam tag:

<cfparam name="VariableName"
type="data_type"
default="DefaultValue">

Note
For information on using the type attribute to validate the parameter data type, see
the “Using cfparam to validate the data type” section of this chapter.

There are two ways to use the cfparam tag to test for variable existence, depending
on how you want the validation test to proceed:

• With only the name attribute to test that a required variable exists. If it does not
exist, the ColdFusion Server stops processing the page and displays an error
message.

• With the name and default attributes to test for the existence of an optional
variable. If the variable exists, processing continues and the value is not changed.
If the variable does not exist, it is created and set to the value of the default
attribute, and processing continues.

The following example shows how to use the cfparam tag to check for the existence of
an optional variable and to set a default value if the variable does not already exist:
<cfparam name="Form.Contract" default="Yes">

Example: Testing for variables

Using cfparam with the name variable is one way to clearly define the variables that a
page or a custom tag expects to receive before processing can proceed. This can
make your code more readable, as well as easier to maintain and debug.

Ensuring that Variables Exist 89
For example, the following series of cfparam tags indicates that this page expects two
form variables named StartRow and RowsToFetch:

<cfparam name="Form.StartRow">
<cfparam name="Form.RowsToFetch">

If the page with these tags is called without either one of the form variables, an error
occurs and the page stops processing. By default, ColdFusion displays an error
message; you can also handle the error as described in Chapter 11, “Preventing and
Handling Errors” on page 191.

Example: setting default values

This example uses cfparam to see if optional variables exist. If they do exist,
processing continues. If they do not exist, they are created and set to the default
value.

<cfparam name="Cookie.SearchString" default="temple">
<cfparam name="Client.Color" default="Grey">
<cfparam name="ShowExtraInfo" default="No">

You can use cfparam to set default values for URL and Form variables, instead of
using conditional logic. For example, the action page could have the following code
to ensure that a SelectDepts variable exists:

<cfparam name="Form.SelectedDepts" default="Marketing,Sales">

Requiring users to enter values in form fields
One of the limitations of HTML forms is the inability to define input fields as
required. Because this is a particularly important requirement for database
applications, ColdFusion provides a server-side mechanism for requiring users to
enter data in fields.

To require entry in an input field, use a hidden field that has a name attribute
composed of the field name and the suffix "_required." For example, to require that
the user enter a value in the FirstName field, use the syntax:

<input type="hidden" name="FirstName_required">

If the user leaves the FirstName field empty, ColdFusion rejects the form submittal
and returns a message informing the user that the field is required. You can
customize the contents of this error message using the value attribute of the hidden
field. For example, if you want the error message to read “You must enter your first
name,” use the following syntax:

<input type="hidden"
name="FirstName_required"
value="You must enter your first name.">

90 Chapter 6 Making Variables Dynamic
Validating Data Types
It is often not sufficient that input data merely exists; it must also have the right
format. For example, a date field must have data in a date format. A salary field must
have data in a numeric or currency format. There are many ways to ensure the
validity of data, including the following methods:

• Using the cfparam tag with the type attribute to validate any variable.

• Using a form input tag with a hidden attribute to validate the contents of a form
input field.

• Using cfform controls that have validation attributes. (For information on using
cfform tags, see Chapter 9, “Building Dynamic Forms” on page 135.)

• Using the cfqueryparam tag in a SQL WHERE clause to validate query
parameters.

Note
The data validation discussed in this chapter is done by the ColdFusion Server.
Validation using cfform tags is done using JavaScript in the user’s browser, before
any data is sent to the server.

Using cfparam to validate the data type
The cfparam type attribute lets you validate the type of a parameter. You can specify
that the parameter type must be any of the following values:

For example, you can use the following code to validate the variable BirthDate:

<cfparam name="BirthDate" type="date">

Type value Meaning

any any value

array any array value

binary any binary value

boolean true, false, yes, or no

date any value in a valid date, time, or date-time format

numeric any number

query a query object

string a text string or single character

struct a structure

UUID a Universally Unique Identifier (UUID) formatted as
XXXXXXXX-XXXX-XXXX-XXXXXXXXXXXXXXX where X stands
for a hexadecimal digit (0-9 or A-F).

variableName a valid variable name

Validating Data Types 91
If the variable is not in a valid date format, an error occurs and the page stops
processing.

Validating form field data types
One limitation of standard HTML forms is that you cannot validate that users input
the type or range of data you expect. ColdFusion enables you to do several types of
data validation by adding hidden fields to forms.

The following table describes the hidden field suffixes that you can use to do
validation:

Note
Adding a validation rule to a field does not make it a required field. You need to add a
separate _required hidden field if you want to ensure user entry.

The following procedure creates a simple form for entering a start date and a salary.
It uses hidden fields to ensure that you enter data and that the data is in the right
format.

This example illustrates another concept that might seem surprising. You can use
the same CFML page as both a form page and its action page. Because the only
action is to display the values of the two variables that you enter, the action is on the
same page as the form.

Field Suffix Value Attribute Description

_integer Custom error
message

Verifies that the user entered a number. If the
user enters a floating point value, it is rounded to
an integer.

_float Custom error
message

Verifies that the user entered a number. Does not
do any rounding of floating point values.

_range MIN=MinValue
MAX=MaxValue

Verifies that the numeric value entered is within
the specified boundaries. You can specify one or
both of the boundaries separated by a space.

_date Custom error
message

Verifies that the user entered a date and converts
the date into the proper ODBC date format. Will
accept most common date forms; for example,
9/1/98; Sept. 9, 1998.

_time Custom error
message

Verifies that the user correctly entered a time and
converts the time to the proper ODBC time
format.

_eurodate Custom error
message

Verifies that the user entered a date in a standard
European date format and converts into the
proper ODBC date format.

92 Chapter 6 Making Variables Dynamic
Using a single page for both the form and action provides the opportunity to
illustrate the use of the IsDefined function to check that data exists. This way, the
form does not show any results until you submit the input.

To validate the data that users enter in the insert form:

1 Create a new page in ColdFusion Studio.

2 Enter the following text:

<html>
<head>

<title>Simple Data Form</title>
</head>
<body>
<h2>Simple Data Form</h2>

<!--- Form part --->
<form action="datatest.cfm" method="Post">

<input type="hidden"
name="StartDate_required"
value="You must enter a start date.">

<input type="hidden"
name="StartDate_date"
value="Enter a valid date as the start date.">

<input type="hidden"
name="Salary_required"
value="You must enter a salary.">

<input type="hidden"
name="Salary_float"
value="The salary must be a number.">

Start Date:
<input type="text"

name="StartDate" size="16"
maxlength="16">

Salary:
<input type="text"

name="Salary"
size="10"
maxlength="10">

<input type="reset"
name="ResetForm"
value="Clear Form">

<input type="submit"
name="SubmitForm"
value="Insert Data">

</form>

<!--- Action part --->
<cfif isdefined("Form.StartDate")>

<cfoutput>
Start Date is: #DateFormat(Form.StartDate)#

Salary is: #DollarFormat(Form.Salary)#

Validating Data Types 93
</cfoutput>
</cfif>
</html>

3 Save the file as datatest.cfm.

4 View the file in your browser, omit a field or enter invalid data, and click the
Submit button.

When the user submits the form, ColdFusion scans the form fields to find any
validation rules you specified. The rules are then used to analyze the user’s input. If
any of the input rules are violated, ColdFusion sends an error message to the user
that explains the problem. The user then must go back to the form, correct the
problem. and resubmit the form. ColdFusion does not accept form submission until
the user enters the entire form correctly.

Because numeric values often contain commas and dollar signs, these characters are
automatically deleted from fields with _integer, _float, or _range rules before they
are validated and saved to a database.

Reviewing the code

The following table describes the code and its function:

Code Description

<form action="actionpage.cfm"
method="post">

Gather the information from this form
using the Post method, and do
something with it on the page
dataform.cfm, which is this page.

<input type="hidden"
name="StartDate_required"
value="You must enter a start date.">

<input type="hidden"
name="StartDate_date"
value="Enter a valid date as the
start date.">

Require input into the StartDate input
field. If there is no input, display the error
information “You must enter a start
date.” Require the input to be in a valid
date format. If the input is not valid,
display the error information “Enter a
valid date as the start date.”

<input type="hidden"
name="Salary_required"
value="You must enter a salary.">

<input type="hidden"
name="Salary_float"
value="The salary must be a number.">

Require input into the Salary input field.
If there is no input, display the error
information “You must enter a salary.”
Require the input to be in a valid
number. If it is not valid, display the error
information “The salary must be a
number.”

Start Date:
<input type="text"

name="StartDate" size="16"
maxlength="16">

Create a text box called StartDate in
which users can enter their starting date.
Make it exactly 16 characters wide.

94 Chapter 6 Making Variables Dynamic
Checking query parameters with cfqueryparam
You can use the cfqueryparam tag to validate SQL query parameters. This tag can
validate the value of the SQL query parameter against a SQL data type such as REAL,
TIME, or DATE. The cfqueryparam tag validates the data as follows:

• If the value does not match the data type, the tag returns an error message.

• If the value matches the data type and the database driver supports data bind
parameters, the tag generates a SQL BIND PARAMETER statement to bind the
parameter.

• If the database driver does not support bind parameters, the tag just uses the
parameter value in the query string.

The cfqueryparam tag can also validate parameter value length and its number of
decimal places.

Note
The cfqueryparam tag allows you to specify SQL parameters in queries. It improves
performance, maintenance, and security of data queries by improving server-side
caching for Oracle databases, supporting updating of long text fields from a SQL
statement, and preventing a malicious user from attaching multiple SQL statements
to a SQL statement substitution variable. For more information on cfqueryparam
and its use, see the CFML Reference.

The cfqueryparam tag can have any of several additional advantages, depending on
the database system and Web server software that you are using:

• Some Web servers have security issues in which SQL appended to URL strings
can evade system security. cfqueryparam can help prevent this problem.

• Some database management systems, including some Oracle releases, limit the
size of query text fields to 4K bytes. By using cfqueryparam you can overcome
this limitation.

• Using cfqueryparam can speed database processing by using bind parameters.

Salary:
<input type="text"

name="Salary"
size="10"
maxlength="10">

Create a text box called Salary in which
users can enter their salary. Make it
exactly ten characters wide.

<cfif isdefined("Form.StartDate")>
<cfoutput>

Start Date is:
#DateFormat(Form.StartDate)#

Salary is:
#DollarFormat(Form.Salary)#

</cfoutput>
</cfif>

Output the values of the StartDate and
Salary form fields only if they are
defined. They are not defined until you
submit the form, so they do not appear
on the initial form. Use the DateFormat
function to display the start date in the
default date format. Use the
DollarFormat function to display the
salary with a dollar sign and commas.

Code Description

Validating Data Types 95
The following example shows the use of cfqueryparam when valid input is given in
the Course_ID variable used as a query parameter. To see what happens when you
use invalid data, substitute a text string such as “test” for the integer 12 in the cfset
statement.

Note that this example uses the cfsnippets database that is provided with
ColdFusion, not the CompanyInfo database used in most of this book.

<html>
<head>
<title>cfqueryparam Example</title>
</head>

<body>
<h3>cfqueryparam Example</h3>
<cfset course_id=12>
<cfquery name="getFirst" datasource="cfsnippets">
 SELECT *
 FROM courses
 WHERE Course_ID=<cfqueryparam value="#Course_ID#"
 cfsqltype="CF_SQL_INTEGER">
</cfquery>
<cfoutput query="getFirst">
<p>
Course Number: #number#

 Description: #descript#
</p>
</cfoutput>
</body>
</html>

Reviewing the code

The following table describes the code and its function:

Code Description

<cfset Course_ID=12>> Set the course_ID variable to 12.

<cfquery name="getFirst"
DataSource="cfsnippets">

Query the cfsnippets data source and
return the results in the getFirst query
object.

SELECT *
FROM courses

Select all columns from the courses
table.

96 Chapter 6 Making Variables Dynamic
Dynamic SQL
Embedding SQL queries that use dynamic parameters is a powerful mechanism for
linking variable inputs to database queries. However, in more sophisticated
applications, you often want user inputs to determine not only the content of queries
but also the structure of queries.

Dynamic SQL allows you to dynamically determine (based on runtime parameters)
which parts of a SQL statement are sent to the database. So if a user leaves a search
field empty, for example, you can simply omit the part of the WHERE clause that
refers to that field. Or, if a user does not specify a sort order, you can omit the entire
ORDER BY clause.

Implementing dynamic SQL
You implement dynamic SQL in ColdFusion by using cfif, cfelse, cfelseif tags
to control how the SQL statement is constructed, for example:

<cfquery name="queryname" datasource="datasourcename">
...Base SQL statement(s)

<cfif value operator value >
...additional SQL statement(s)
</cfif>

</cfquery>

The following code creates an application that lets a user search the CompanyInfo
database for employees by first name, last name, minimum salary, contract status, or
any combination of these criteria.

WHERE Course_ID=<cfqueryparam
value="#Course_ID#"
cfsqltype="CF_SQL_INTEGER">

</cfquery>

Only select rows where the Course_ID
column equals the value of Course_ID
CFML local variable. Validate that the
variable value is an integer and, if
appropriate for the database driver, use a
bind parameter to associate the value
with the SQL statement.

<cfoutput query="getFirst">
<p>

Department Number: #number#

Description: #descript#

</p>
</cfoutput>

For each row that matches the query,
output the contents of the number and
descript columns.

Code Description

Dynamic SQL 97
Creating the input form

First, you need to create an input form, which asks for information about several
fields in the Employee table. To search for data based on only the fields the user
enters in the form, you use cfif statements in the SQL statement.

To create the input form:

1 Create a new application page in ColdFusion Studio.

2 Enter the following code:

<html>
<head>
<title>Input form</title>
</head>
<body>

<!--- Query the Employee table to be able to populate the form --->
<cfquery name="AskEmployees" datasource="CompanyInfo">
SELECT

FirstName,
LastName,
Salary,
Contract

FROM Employee
</cfquery>

<!--- define the action page in the form tag. The form variables will
pass to this page when the form is submitted --->

<form action="getemp.cfm" method="post">

<!-- text box -->
<p>First Name: <input type="Text" name="FirstName" size="20"

maxlength="35">

Last Name: <input type="Text" name="LastName" size="20"

maxlength="35">

Salary: <input type="Text" name="Salary" size="10" maxlength="10">
</p>

<!-- check box -->
<p>Contractor? <input type="checkbox" name="Contract" value="Yes"

>Yes if checked
</p>

<!-- reset button -->
<input type="reset" name="ResetForm" value="Clear Form">
<!-- submit button -->
<input type="submit" name="SubmitForm" value="Submit">

</form>
</body>
</html>

3 Save the page as askemp.cfm.

98 Chapter 6 Making Variables Dynamic
Creating the action page

After you create the input form, you can create the action page to process the user’s
request. This action page determines where the user entered search criteria and
searches based only on those criteria.

To create the action page:

1 Create a new application page in ColdFusion Studio.

2 Enter the following code:

<html>
<head>

<title>Get Employee Data</title>
</head>

<body>
<cfquery name="GetEmployees" datasource="CompanyInfo">

SELECT *
FROM Employee
WHERE

<cfif #form.firstname# is not "">
Employee.FirstName LIKE ’#form.FirstName#%’ AND

</cfif>

<cfif #form.lastname# is not "">
Employee.LastName LIKE ’#form.LastName#%’ AND

</cfif>

<cfif #form.salary# is not "">
Employee.Salary >= #form.Salary# AND

</cfif>

<cfif isdefined("Form.Contract")>
Employee.Contract = ’Yes’ AND

<cfelse>
Employee.Contract = ’No’ AND

</cfif>
0=0

</cfquery>

<h3>Employee Data Based on Criteria from Form</h3>
<table>
<tr>

<th>First Name</th>
<th>Last Name</th>
<th>Salary</th>
<th>Contractor</th>

</tr>
<cfoutput query="GetEmployees">
<tr>

Dynamic SQL 99
<td>#FirstName#</td>
<td>#LastName#</td>
<td>#DollarFormat(Salary)#</td>
<td>#Contract#</td>

</tr>
</cfoutput>
</table>

</body>
</html>

3 Save the page as getemp.cfm.

4 Open the file askemp.cfm in your browser and enter criteria into any fields, then
submit the form.

5 Verify that the results meet the criteria you specify.

Reviewing the code

The action page getemp.cfm builds a SQL statement dynamically based on what the
user enters in the form page AskEmp.cfm. The following table describes the
highlighted code and its function:

CFML Code Description

SELECT *
FROM Employee
WHERE

Get the records from the Employee table
according to the following conditions.

<cfif #Form.FirstName# is not "">
Employee.FirstName LIKE

’#form.FirstName#%’ AND
</cfif>

If the user entered anything in the
FirstName text box in the form, add "AND
Employee.FirstName LIKE ‘[what the user
entered in the FirstName text box]%'" to the
SQL statement. You can use the FirstName
variable without ensuring its existence
because text boxes pass an empty string if
you do not enter text.

<cfif #Form.LastName# is not "">
Employee.LastName LIKE

’#form.LastName#%’ AND
</cfif>

If the user entered anything in the
LastName text box in the form, add "AND
Employee.LastName LIKE ‘[what the user
entered in the LastName text box]%'" to the
SQL statement.

<cfif #Form.Salary# is not "">
Employee.Salary >=

#form.Salary# AND
</cfif>

If the user entered anything in the Salary
text box in the form, add "AND
Employee.Salary >= [what the user entered
in the Salary text box]" to the SQL
statement.

100 Chapter 6 Making Variables Dynamic
<cfif isDefined("Form.Contract")>
Employee.Contract = ‘Yes' AND

<cfelse>
Employee.Contract = 'No' AND

</cfif>

If the user selected the Contractor check
box, get data for the employees who are
contractors; otherwise, get data for
employees who are not contractors. The
isdefined function test for the existence of
the Form.Contract variable is needed
because the variable only exists if they
select the Contractor box.

0=0 If none of the conditions are true, the 0=0
statement ensures that the WHERE clause
does not result in a SQL syntax error.
Instead, the SELECT statement returns the
entire table. Putting this statement at the
end of the WHERE clause improves
security by making it harder to attach extra
SQL statements in a dynamic variable, and
may affect the database’s optimization of
the SQL statement.

CFML Code Description

Chapter 7

Updating Your Database
This chapter describes how to insert, update, and delete data in a database with
ColdFusion.

Contents

• Inserting Data .. 102

• Updating Data ... 106

• Deleting Data... 112

102 Chapter 7 Updating Your Database
Inserting Data
You usually use two application pages to insert data into a database:

• An insert form

• An insert action page

You can create an insert form with standard HTML form tags or with cfform tags (see
“Creating Forms with the cfform Tag” on page 136). When the user submits the form,
form variables are passed to a ColdFusion action page that performs an insert
operation (and whatever else is called for) on the specified data source. The insert
action page can contain either a cfinsert tag or a cfquery tag with a SQL INSERT
statement. The insert action page should also contain a message for the end user.

Creating an HTML insert form
The following procedure creates a form using standard HTML tags.

To create an insert form:

1 Create a new application page in ColdFusion Studio.

2 Edit the page so that it appears as follows:

<html>
<head>

<title>Insert Data Form</title>
</head>

<body>
<H2>Insert Data Form</H2>
<form action="insertaction.cfm" method="post">

Employee ID:
<input type="text" name="Emp_ID" size="4" maxlength="4">

First Name:
<input type="Text" name="FirstName" size="35" maxlength="50">

Last Name:
<input type="Text" name="LastName" size="35" maxlength="50">

Department Number:
<input type="Text" name="Dept_ID" size="4" maxlength="4">

Start Date:
<input type="Text" name="StartDate" size="16" maxlength="16">

Salary:
<input type="Text" name="Salary" size="10" maxlength="10">

Contractor:
<input type="checkbox" name="Contract" value="Yes" checked>Yes

<input type="Reset" value="Clear Form">
<!-- Submit button -->
<input type="Submit" value="Submit">

</form>

</body>
</html>

Inserting Data 103
3 Save the file as insertform.cfm in the myapps directory.

4 View insertform.cfm in a browser.

Data entry form notes and considerations
If you use the cfinsert tag in the action page to insert the data into the database,
you should follow these rules for creating the form page:

• You only need to create HTML form fields for the database fields into which you
want to insert data.

• By default, cfinsert inserts all of the form’s fields into the database table fields
with the same names. For example, it puts the Form.Emp_ID value in the
database Emp_ID field. The tag ignores any form fields with no corresponding
database column name. You can also use the formfields attribute to specify the
fields you want to insert.

Creating an action page to insert data
You can use the cfinsert tag or cfquery tag to create an action page that inserts
data into a database.

Creating an insert action page with cfinsert

The cfinsert tag is the easiest way to handle simple inserts from either a cfform or
an HTML form. This tag inserts data from all the form fields with names that match
database field names.

To create an insert action page with cfinsert:

1 Create a new application page in ColdFusion Studio.

2 Enter the following code:

<!--- Make the contract variable be No if it is not set (check box is
empty) --->

<cfif not isdefined("Form.Contract")>
 <cfset Form.contract = "No">
</cfif>

<!--- Insert the new record --->
<cfinsert datasource="CompanyInfo" tablename="Employee">

<html>
<head>

<title>input form</title>
</head>

<body>
<h1>Employee Added</h1>
<cfoutput>You have added #Form.FirstName# #Form.Lastname# to the

employees database.

104 Chapter 7 Updating Your Database
</cfoutput>

</body>
</html>

3 Save the page as insertaction.cfm.

4 View insertform.cfm in a browser, enter values, and click the Submit button.

5 The data is inserted into the Employee table and the message displays.

Reviewing the code

The following table describes the code and its function:

Note
If you use form variables in cfinsert or cfupdate tags, ColdFusion automatically
validates any form data it sends to numeric, date, or time data database columns.
You can use the hidden field validation functions for these fields to display a custom
error message.

Code Description

<cfif not isdefined("Form.Contract")>
 <cfset Form.contract = "No">
</cfif>

If the user clears the Contractor check
box, no value gets passed to the action
page. The database field must have a
value, so check the Form.contract
variable and set it to No if it is not
defined.

<cfinsert datasource="CompanyInfo"
tablename="Employee">

Create a new row in the Employee table
of the CompanyInfo database. Insert
data from the form into database fields
with the same names as the form fields.

<cfoutput>You have added
#Form.FirstName# #Form.Lastname#
to the employees database.

</cfoutput>

Inform the user that the data was
inserted into the database.

Inserting Data 105
Creating an insert action page with cfquery

For more complex inserts from a form submittal you can use a SQL INSERT
statement in a cfquery tag instead of a cfinsert tag. The SQL INSERT statement is
more flexible because you can insert information selectively or use functions within
the statement.

To create an insert page with cfquery:

1 Rename (or delete) the insertaction.cfm page that you created in the previous
section.

2 Create a new application page in ColdFusion Studio.

3 Enter the following code:

<!--- Make the contract variable be No if it is not set
(check box is empty) --->

<cfif not isdefined("Form.Contract")>
 <cfset form.contract = "No">
</cfif>

<!--- Insert the new record --->
<cfquery name="AddEmployee" datasource="CompanyInfo">

INSERT INTO Employee
VALUES (’#Form.Emp_ID#’, ’#Form.FirstName#’,

’#Form.LastName#’, ’#Form.Dept_ID#’,
’#Form.StartDate#’, ’#Form.Salary#’, ’#Form.Contract#’

</cfquery>

<html>
<head>

<title>input form</title>
</head>

<body>
<h1>Employee Added</h1>
<cfoutput>You have added #Form.FirstName# #Form.Lastname# to the

employees database.
</cfoutput>

</body>
</html>

4 Save the page as insertaction.cfm.

5 View insertform.cfm in a browser, enter values, and click Submit.

6 The data is inserted into the Employee table and the message displays.

106 Chapter 7 Updating Your Database
Reviewing the code

The following table describes the highlighted code and its function:

Updating Data
You usually use two application pages to update data in a database:

• An update form

• An update action page

You can create an update form with cfform tags or HTML form tags. The update
form calls an update action page, which can contain either a cfupdate tag or a
cfquery tag with a SQL UPDATE statement. The update action page should also
contain a message for the end user that reports on the update completion.

Creating an update form
An update form is similar to an insert form, but there are two key differences:

• An update form contains a reference to the primary key of the record that is being
updated.

A primary key is a field or combination of fields in a database table that uniquely
identifies each record in the table. For example, in a table of employee names
and addresses, only the Emp_ID would be unique to each record.

• An update form is usually populated with existing record data because the form’s
purpose is to update data.

The easiest way to designate the primary key in an update form is to include a hidden
input field with the value of the primary key for the record you want to update. The
hidden field indicates to ColdFusion which record to update.

Code Description

<cfquery name="AddEmployee"
datasource="CompanyInfo">
INSERT INTO Employee
VALUES (’#Form.Emp_ID#’,

’#Form.FirstName#’,
’#Form.LastName#’,
’#Form.Dept_ID#’,
’#Form.StartDate#’,
’#Form.Salary#’,
’#Form.Contract#’)

</cfquery>

Use a cfquery tag to insert a new row
into the Employee table of the
CompanyInfo Database. Specify each
form field to be added. Because the form
and database field names are identical,
you do not have to specify the database
field names in the query.

Updating Data 107
To create an update form:

1 Create a new page in ColdFusion Studio.

2 Edit the page so that it appears as follows:

<cfquery name="GetRecordtoUpdate"
datasource="CompanyInfo">
SELECT *

FROM Employee
WHERE Emp_ID = #URL.Emp_ID#

</cfquery>

<html>
<head>
<title>Update Form</title>
</head>

<body>

<cfoutput query="GetRecordtoUpdate">
<form action="updateaction.cfm" method="Post">

<input type="Hidden" name="Emp_ID"
value="#Emp_ID#">

First Name:
<input type="text" name="FirstName" value="#FirstName#">

Last Name:
<input type="text" name="LastName" value="#LastName#">

Department Number:
<input type="text" name="Dept_ID" value="#Dept_ID#">

Start Date:
<input type="text" name="StartDate" value="#StartDate#">

Salary:
<input type="text" name="Salary" value="#Salary#">

Contractor:
<cfif #Contract# IS "Yes">

<input type="checkbox" name="Contract" checked>Yes

<cfelse>

<input type="checkbox" name="Contract">Yes

</cfif>

<input type="Submit" value="Update Information">

</form>
</cfoutput>
</body>
</html>

3 Save the page as updateform.cfm.

4 View updateform.cfm in a browser by specifying the page URL and an Employee
ID, for example, http://localhost/myapps/updateform.cfm?Emp_ID=3.

108 Chapter 7 Updating Your Database
Reviewing the code

The following table describes the code and its function:

Code Description

<cfquery name="GetRecordtoUpdate"
datasource="CompanyInfo">
SELECT *
FROM Employee
WHERE Emp_ID = #URL.Emp_ID#

</cfquery>

Query the CompanyInfo data source
and return the records in which the
employee ID matches what was
entered in the URL that called this
page.

<cfoutput query="GetRecordtoUpdate"> Make the results of the
GetRecordtoUpdate query available
as variables in the form created on
the next line.

<form action="updateaction.cfm"
method="Post">

Create a form whose variables will
be processed on the
updateaction.cfm action page.

<input type="Hidden" name="Emp_ID"
value="#Emp_ID#">

Use a hidden input field to pass the
employee ID to the action page.

First Name:
<input type="text" name="FirstName"

value="#FirstName#">

Last Name:
<input type="text" name="LastName"

value="#LastName#">

Department Number:
<input type="text" name="Dept_ID"

value="#Dept_ID#">

Start Date:
<input type="text" name="StartDate"

value="#StartDate#">

Salary:
<input type="text" name="Salary"

value="#Salary#">

Populate the fields of the update
form. This example does not use any
ColdFusion formatting functions to
“clean up” the form. As a result, the
start dates look like 1985-03-12
00:00:00 and the salaries do not
have dollar signs or commas. The
user can replace the information in
any field using any valid input format
for the data.

Contractor:
<cfif #Contract# IS "Yes">

<input type="checkbox" name="Contract"
checked>Yes

<cfelse>
<input type="checkbox" name="Contract">

Yes

</cfif>

<input type="Submit" value="Update

Information">
</form>
</cfoutput>

The Contractor field needs special
treatment because a check box
displays and sets its value. Use the
cfif structure to put a check mark in
the check box if the Contract field
value is Yes, and leave the box
empty otherwise.

Updating Data 109
Creating an action page to update data
You can create an action page to update data with either the cfupdate tag or cfquery
with the UPDATE statement.

Creating an update action page with cfupdate

The cfupdate tag is the easiest way to handle simple updates from a front end form.
The cfupdate tag has an almost identical syntax to the cfinsert tag.

To use cfupdate, you must include the field or fields that make up the primary key in
your form submittal. The cfupdate tag automatically detects the primary key fields
in the table that you are updating and looks for them in the submitted form fields.
ColdFusion uses the primary key fields to select the record to update. (Therefore, you
cannot update the primary key value itself.) It then uses the remaining form fields
that are submitted to update the corresponding fields in the record. Your form only
needs to have fields for the database fields that you want to change.

To create an update page with cfupdate:

1 Create a new application page in ColdFusion Studio.

2 Enter the following code:

<cfif not isdefined("Form.Contract")>
<cfset form.contract = "No">

<cfelse>
<cfset form.contract = "Yes">

</cfif>

<cfupdate datasource="CompanyInfo"
tablename="Employee">

<html>
<head>

<title>Update Employee</title>
</head>
<body>

<h1>Employee Updated</h1>
<cfoutput>
You have updated the information for #Form.FirstName#

#Form.LastName# in the Employees database.
</cfoutput>

</body>
</html>

3 Save the page. as updateaction.cfm.

4 View updateform.cfm in a browser by specifying the page URL and an Employee
ID, for example, http://localhost/myapps/updateform.cfm?Emp_ID=3. Enter
new values in any of the fields, and click the Submit button.

5 The data is updated in the Employee table and the message appears.

110 Chapter 7 Updating Your Database
Reviewing the code

The following table describes the code and its function:

Creating an update action page with cfquery

For more complicated updates, you can use a SQL UPDATE statement in a cfquery
tag instead of a cfupdate tag. The SQL update statement is more flexible for
complicated updates.

To create an update page with cfquery:

1 Open updatepage.cfm.

2 Replace the cfupdate tag with the highlighted cfquery code.:

<cfif not isdefined("Form.Contract")>
<cfset form.contract = "No">

<cfelse>
<cfset form.contract = "Yes">

</cfif>

<cfquery name="UpdateEmployee" datasource="CompanyInfo">
UPDATE Employee
SET FirstName = ’#Form.Firstname#’,

LastName = ’#Form.LastName#’,
Dept_ID = ’#Form.Dept_ID#’,
StartDate = ’#Form.StartDate#’,
Salary = ’#Form.Salary#’

WHERE Emp_ID = #Form.Emp_ID#
</cfquery>

Code Description

<cfif not
isdefined("Form.Contract")>

 <cfset Form.contract = "No">
<cfelse>

<cfset form.contract = "Yes">
</cfif>

If the user clears the Contractor check box,
no value gets passed to the action page.
Also, the database field must have a value
of Yes or No. Test the Form.contract
variable and set it to No if it is not defined
and Yes if it is defined.

<cfupdate datasource="CompanyInfo"
tablename="Employee">

Update the record in the database that
matches the primary key on the form (the
Emp_ID). Update all fields in the record
with names that match the names of
controls on the form.

<cfoutput>
You have updated the information for

#Form.FirstName# #Form.LastName#
in the Employees database.

</cfoutput>

Inform the user that the change was made
successfully.

Updating Data 111
<h1>Employee Updated</h1>
<cfoutput>
You have updated the information for #Form.FirstName#

#Form.LastName# in the Employees database.
</cfoutput>

3 Save the page.

4 View updateform.cfm in a browser by specifying the page URL and an Employee
ID, for example, http://localhost/myapps/updateform.cfm?Emp_ID=3. Enter
new values in any of the fields, and click Submit.

5 The data is updated into the Employee table and the message displays.

Reviewing the code

The following table describes the highlighted code and its function:

Code Description

<cfquery name="UpdateEmployee"
datasource="CompanyInfo">

UPDATE Employee
SET FirstName = ’#Form.Firstname#’,

LastName = ’#Form.LastName#’,
Dept_ID = ’#Form.Dept_ID#’,
StartDate = ’#Form.StartDate#’,
Salary = ’#Form.Salary#’

WHERE Emp_ID = #Form.Emp_ID#
</cfquery>

Update the record in the
database that matches the
primary key on the form,
(Emp_ID). Update all fields in the
record with names that match the
names of controls on the form.
Because #From.Emp_ID# is
numeric, you do not enclose it in
quotes.

112 Chapter 7 Updating Your Database
Deleting Data
You use a cfquery tag with a SQL DELETE statement to delete data from a database.

Deleting a single record
To delete a single record, use the table’s primary key in the WHERE condition of a
SQL DELETE statement. In the example, the Emp_ID field is the primary key, so the
SQL Delete statement is as follows:

DELETE FROM Employee WHERE Emp_ID = #Form.Emp_ID#

You often want to see the data before you delete it. The following example displays
the data to be deleted by reusing the form page used to insert and update data. Any
data that you enter in the form before submitting it is not used, so you can use a table
to display the record to be deleted instead.

To delete one record from a database:

1 Open the file updateform.cfm in ColdFusion Studio.

2 Change the title to “Delete Form” and the text on the submit button to “Delete
Record”.

3 Change the form tag so that it appears as follows:

<form action="deleteaction.cfm" method="Post">

4 Save the modified file as deleteform.cfm.

5 Create a new application page in ColdFusion Studio.

6 Enter the following code:

<cfquery name="DeleteEmployee"
datasource="CompanyInfo">
DELETE FROM Employee
WHERE Emp_ID = #Form.Emp_ID#

</cfquery>

<html>
<head>

<title>Delete Employee Record</title>
</head>
<body>
<h3>The employee record has been deleted.</h3>
<P><cfoutput>
You have deleted #Form.FirstName# #Form.LastName# from the Employees

database.
</cfoutput></P>
</body>
</html>

7 Save the page. as deleteaction.cfm.

Deleting Data 113
8 View deleteform.cfm a browser by specifying the page URL and an Employee ID,
for example, http://localhost/myapps/updateform.cfm?Emp_ID=3. and click the
Submit button.

The employee is deleted from the Employee table and the message displays.

Reviewing the code

The following table describes the code and its function:

Deleting multiple records
You can use a SQL condition to delete several records. The following example deletes
the records for everyone in the Sales department (which has Dept_ID number 4)
from the Employee table:

DELETE FROM Employee
WHERE Dept_ID = 4

To delete all the records from the Employee table, you use the following code:

DELETE FROM Employee

Note
Deleting records from a database is not reversible. Use DELETE statements carefully.

Code Description

<cfquery name="DeleteEmployee"
datasource="CompanyInfo">
DELETE FROM Employee
WHERE Emp_ID = #Form.Emp_ID#

</cfquery>

Delete the record in the database whose
Emp_ID column matches the Emp_ID
(hidden) field on the form. Since the
Emp_ID is the table’s primary key, only one
record gets deleted.

<cfoutput>
You have deleted #Form.FirstName#

#Form.LastName# from the
Employees database.

</cfoutput>

Inform the user that the record was deleted.

114 Chapter 7 Updating Your Database

Chapter 8

Handling Complex Data
with Structures
ColdFusion supports dynamic multidimensional arrays. This chapter explains the
basics of creating and handling arrays. It also provides several examples showing
how arrays can enhance your ColdFusion application code.

ColdFusion also supports structures for managing lists of key-value pairs. This
chapter explains the basics of creating and working with structures.

Contents

• About Arrays .. 116

• Basic Array Techniques... 118

• Populating Arrays with Data... 121

• Array Functions ... 124

• About Structures.. 125

• Creating and Using Structures ... 127

• Structure Functions .. 133

116 Chapter 8 Handling Complex Data with Structures
About Arrays
Traditionally, an array is a tabular structure used to hold data, much like a
spreadsheet table with clearly defined limits and dimensions. A two-dimensional
(2D) array is like a simple table. In ColdFusion, you typically use arrays to
temporarily store data. For example, if your site allows users to order goods online,
you can store their shopping cart contents in an array. This allows you to make
changes easily without committing the information, which the user can change
before completing the transaction, to a database.

Conventional fixed-size 2D array

A 2D array is like a cube made up of individual cells, as the following figure shows:

ColdFusion arrays differ somewhat from traditional arrays because they are
dynamic. For example, in a conventional array, array size is constant and
symmetrical, whereas in a ColdFusion 2D array you can have rows of differing
lengths based on the data that has been added or removed. The following figure
represents a ColdFusion 2D array:

About Arrays 117
ColdFusion dynamic 2D array

A ColdFusion 2D array is actually a one-dimensional array that contains a series of
additional 1D arrays. Each of the arrays that make up a row can expand and contract
independently of any other column.

The following terms will help you understand subsequent discussions of ColdFusion
arrays:

• Array dimension The relative complexity of the array structure.

• Index The position of an element in a dimension, ordinarily surrounded by
square brackets: my1Darray[1], my2Darray[1][1], my3Darray[1][1][1].

• Array element Data stored in an array index.

The syntax my2darray[1][3]="Paul" is the same as saying ’My2dArray is a
two-dimensional array and the value of the array element index [1][3] is "Paul".’

Dynamic arrays expand to accept data you add to them and contract as you remove
data from them.

118 Chapter 8 Handling Complex Data with Structures
Basic Array Techniques
To use arrays in ColdFusion, as in other languages, you need to first declare the
array, specifying its dimension. Once it is declared, you can add array elements,
which you can then reference by index.

As an example, suppose you declare a 1D array called "firstname":

<cfset firstname=ArrayNew(1)>

At first, the array firstname holds no data and is of an unspecified length. Now you
want to add data to the array:

<cfset firstname[1]="Coleman">
<cfset firstname[2]="Charlie">
<cfset firstname[3]="Dexter">

After you add these names to the array, it has a length of 3:

<cfset temp=ArrayLen(firstname)>
<!--- temp=3 --->

If you remove data from an array, the array resizes dynamically. Use the
ArrayDeleteAt function to delete data from the array at a particular index, rather
than set the data value to 0 or the empty string:

<cfset temp=ArrayDeleteAt(firstname, 2)>
<!--- "Charlie" has been removed from the array --->

<cfoutput>
The firstname array is #ArrayLen(firstname)#
indexes in length

</cfoutput>

<!--- Now the array has a length of 2, not 3 --->

The array now contains:

firstname[1]=Coleman
firstname[2]=Dexter

Creating an array
In ColdFusion, you declare an array by assigning a variable name to the new array as
follows:

<cfset mynewarray=ArrayNew(x)>

where x is the number of dimensions (from 1 to 3) in the array that you want to
create.

Once created, you can add data to the array, in this case using a form variable:

<cfset mynewarray[4]=Form.emailaddress>

Basic Array Techniques 119
Creating multidimensional arrays

ColdFusion supports dynamic multidimensional arrays. When you declare an array
with the ArrayNew function, you can specify up to three dimensions. However, you
can increase an array’s dimensions by nesting arrays as array elements:

<cfset myarray=ArrayNew(1)>
<cfset myotherarray=ArrayNew(2)>
<cfset biggerarray=ArrayNew(3)>

<cfset biggerarray[1][1][1]=myarray>
<cfset biggerarray[1][1][1][10]=3>
<cfset biggerarray[2][1][1]=myotherarray>
<cfset biggerarray[2][1][1][4][2]="reality">

<cfset biggestarray=ArrayNew(3)>
<cfset biggestarray[3][1][1]=biggerarray>
<cfset biggestarray[3][1][1][2][3][1]="This is complex">

Adding elements to an array
You can add elements to an array by defining the value of an array element:

<cfset myarray[5]=form.variable>

But you can also use a number of array functions to add data to an array. You can use
the following functions:

When you insert an array index with ArrayInsertAt, all indexes to the right of the
new index are recalculated to reflect the new index count.

For more information about these array functions, see the CFML Reference.

Note
Because ColdFusion arrays are dynamic, if you add or delete an element from the
middle of an array, higher-numbered index values all change.

Referencing elements in dynamic arrays
In ColdFusion, array indexes are counted starting with position 1, which means that
position 1 is referenced as firstname[1].

Now you can add to the current firstname array example. For 2D arrays, you
reference an index by specifying two coordinates: myarray[1][1].

Function Description

ArrayAppend Creates a new array index at the end of the array

ArrayPrepend Creates a new array index at the beginning of the array

ArrayInsertAt Inserts an array index and data

120 Chapter 8 Handling Complex Data with Structures
<!--- This example adds a 1D array to a 1D array --->

<!--- Declare two one-dimensional arrays for the first and last names
--->
<cfset firstname=arraynew(1)>
<cfset lastname=arraynew(1)>

<!--- Assign first names directly to the firstname array --->
<cfset firstname[1]="Coleman">
<cfset firstname[2]="Charlie">
<cfset firstname[3]="Dexter">

<!--- Declare the full name array --->
<cfset fullname=arraynew(1)>

<!--- Add the firstname array to index 1 and the lastname array to
index 2 of the fullname array --->

<cfset fullname[1]=firstname>
<cfset fullname[2]=Lastname>

<!--- Add the last names using reference to the fullname array --->

<cfset fullname[2][1]="Hawkins">
<cfset fullname[2][2]="Parker">
<cfset fullname[2][3]="Gordon">

<cfoutput>
#fullname[1][1]# #fullname[2][1]#

#fullname[1][2]# #fullname[2][2]#

#fullname[1][3]# #fullname[2][3]#

#fullname[1][1]# #fullname[2][3]#

</cfoutput>

Note that because this is a full 2D array, you can easily output names that do not
make sense in the real world.

Additional referencing methods

You can reference array indexes in the standard way: myarray[x] where x is the index
that you want to reference. You can also use ColdFusion expressions inside the
square brackets to reference an index. You can use any of the following ways of
referencing an array index:

<cfset myarray[1]=expression>
<cfset myarray[1 + 1]=expression>
<cfset myarray[arrayindex]=expression>

Populating Arrays with Data 121
Populating Arrays with Data
Array elements can store any values, including queries, structures, and other arrays.
You can use a number of functions to populate an array with data, including
ArraySet, ArrayAppend, ArrayInsertAt, and ArrayPrepend. These functions are
useful for adding data to an existing array.

In particular you should master the following basic techniques:

• Populating an array with ArraySet

• Populating an array with cfloop

• Populating an array from a query

Populating an array with ArraySet
You can use the ArraySet function to populate a 1D, or one dimension of a
multidimensional array, with some initial value such as an empty string or 0 (zero).
This can be useful if you need to create an array of a certain size, but do not need to
add data to it right away. One reason to do this is so that you can refer to all the array
indexes. If you refer to an array index that does not contain some value, such as an
empty string, you get an error.

The ArraySet function has the following form:

ArraySet (arrayname, startrow, endrow, value)

This example initializes the array myarray, indexes 1 to 100, with an empty string.

ArraySet (myarray, 1, 100, "")

Populating an array with cfloop
A common and very efficient method for populating an array is by creating a looping
structure that adds data to an array based on some condition using cfloop.

The following example uses a cfloop tag and the MonthAsString function to
populate a simple 1D array with the names of the months. A second cfloop outputs
data in the array to the browser.

<cfset months=arraynew(1)>

<cfloop index="loopcount" from=1 to=12>
<cfset months[loopcount]=MonthAsString(loopcount)>

</cfloop>

<cfloop index="loopcount" from=1 to=12>
<cfoutput>

#months[loopcount]#

</cfoutput>

</cfloop>

122 Chapter 8 Handling Complex Data with Structures
Using nested loops for 2D and 3D arrays
To output values from 2D and 3D arrays, you must employ nested loops to return
array data. With a 1D array, a single cfloop is sufficient to output data, as in the
previous example. With arrays of dimension greater than one, you need to maintain
separate loop counters for each array level.

Nesting cfloops for a 2D array

The following example shows how to handle nested cfloops to output data from a
2D array. It also uses nested cfloop tags to populate the array:

<cfset my2darray=arraynew(2)>
<cfloop index="loopcount" from=1 to=12>

<cfloop index="loopcount2" from=1 to=2>
<cfset my2darray[loopcount][loopcount2]=(loopcount * loopcount2)>

</cfloop>
</cfloop>

<p>The values in my2darray are currently:</p>

<cfloop index="OuterCounter" from="1" to="#ArrayLen(my2darray)#">
<cfloop index="InnerCounter" from="1"

to="#ArrayLen(my2darray[OuterCounter])#">
<cfoutput>

[#OuterCounter#][#InnerCounter#]:
#my2darray[OuterCounter][InnerCounter]#

</cfoutput>
</cfloop>

</cfloop>

Nesting CFLOOPs for a 3D array

For 3D arrays, you simply nest an additional cfloop. (This example does not set the
array values first. You can try doing it as an exercise.)

<cfloop index="Dim1" from="1" to="#ArrayLen(my3darray)#">
<cfloop index="Dim2" from="1" to="#ArrayLen(my3darray[Dim1])#">

<cfloop index="Dim3" from="1"
to="#ArrayLen(my3darray[Dim1][Dim2])#">

<cfoutput>
[#Dim1#][#Dim2#][#Dim3#]:
#my3darray[Dim1][Dim2][Dim3]#

</cfoutput>
</cfloop>

</cfloop>
</cfloop>

Populating Arrays with Data 123
Populating an array from a query
When populating an array from a query, keep the following things in mind:

• Query data cannot be added to an array all at once. A looping structure is
generally required to populate an array from a query.

• Query column data can be referenced using array-like syntax. For example,
myquery.col_name[1] references data in the first row in the column col_name of
the myquery query.

• Inside a cfloop query= loop, you do not have to specify the query name to
reference the query’s variables.

You can use a cfset tag to define values for array indexes, as in the following
example:

<cfset arrayname[x]=column[row]>

In the following example, a cfloop places four columns of data from a sample data
source into an array, "myarray."

<!--- Do the query --->
<cfquery name="test" datasource="cfsnippets">

SELECT Emp_ID, LastName, FirstName, Email
FROM Employees

</cfquery>

<!--- Declare the array --->
<cfset myarray=arraynew(2)>

<!--- Populate the array row by row --->
<cfloop query="test">

<cfset myarray[currentrow][1]=Emp_ID[currentrow]>
<cfset myarray[currentrow][2]=LastName[currentrow]>
<cfset myarray[currentrow][3]=FirstName[currentrow]>
<cfset myarray[currentrow][4]=Email[currentrow]>

</cfloop>

<!--- Now, create a loop to output the array contents --->
<cfset total_records=test.recordcount>
<cfloop index="Counter" from=1 to="#Total_Records#">

<cfoutput>
ID: #MyArray[Counter][1]#,
LASTNAME: #MyArray[Counter][2]#,
FIRSTNAME: #MyArray[Counter][3]#,
EMAIL: #MyArray[Counter][4]#

</cfoutput>
</cfloop>

124 Chapter 8 Handling Complex Data with Structures
Array Functions
The following functions are available for creating, editing, and handling arrays:

For more information about each of these functions, see the CFML Reference.

Function Description

ArrayAppend Appends an array element to the end of a specified array.

ArrayAvg Returns the average of the values in the specified array.

ArrayClear Deletes all data in a specified array.

ArrayDeleteAt Deletes an element from a specified array at the specified index
and resizes the array.

ArrayInsertAt Inserts an element (with data) in a specified array at the specified
index and resizes the array.

ArrayIsEmpty Returns True if the specified array is empty of data.

ArrayLen Returns the length of the specified array.

ArrayMax Returns the largest numeric value in the specified array.

ArrayMin Returns the smallest numeric value in the specified array.

ArrayNew Creates a new array of specified dimension.

ArrayPrepend Adds an array element to the beginning of the specified array.

ArrayResize Resets an array to a specified minimum number of elements.

ArraySet Sets the elements in a 1D array in a specified range to a specified
value.

ArraySort Returns the specified array with elements sorted numerically or
alphanumerically.

ArraySum Returns the sum of values in the specified array.

ArraySwap Swaps array values in the specified indexes.

ArrayToList Converts the specified one dimensional array to a list, delimited
with the character you specify.

IsArray Returns True if the value is an array.

ListToArray Converts the specified list, delimited with the character you specify,
to an array.

About Structures 125
About Structures
ColdFusion structures consist of key-value pairs. Structures let you build a collection
of related variables that are grouped under a single name. You can define
ColdFusion structures dynamically.

You can use structures to refer to related values as a unit rather than individually. To
maintain employee lists, for example, you can create a structure that holds
personnel information such as name, address, phone number, ID numbers, and so
on. Then you can refer to this collection of information as a structure called employee
rather than as a collection of individual variables.

A structure’s key must be a string. The values associated with the key can be
anything; for example, a string, an integer, an array, or another structure. Because
structures can contain both structures and arrays, they provide a very powerful and
flexible mechanism for representing complex data.

You can use structures as associative arrays. When used as associative arrays,
structures index repetitive data by string keys rather than by integers. For example,
you might use structures to create an associative array that matches people’s names
with their departments. In this example, a structure named Departments includes an
employee named John, listed in the Sales department. To access John’s department,
you would use the syntax, Departments["John"].

126 Chapter 8 Handling Complex Data with Structures
Structure notation
ColdFusion supports three types of notation for structures. Which notation you use
depends on your needs:

Notation Description

Object.property Use to refer to values in a structure. You can refer to a
property, prop, of an object, obj, as obj.prop. This
notation is useful for simple assignments, as in this
example:
depts.John="Sales"

Use this notation only when you know the property
names (keys) in advance and they are strings, with no
special characters, numbers, or spaces. You cannot use
the dot notation when the property, or key, is dynamic.

Associative arrays If you do not know the key name is in advance, or it
contains spaces, numbers or special characters, you
can use associative array notation. This notation uses
structures as arrays with string indexes, for example,
depts["John"] or depts["John Doe"]="Sales.".

Structure functions Use structure functions when you cannot use the simpler
syntax styles.
You must use structure functions to create and remove
structures and their elements, including renaming keys.
You do not need structure functions to access value data
in structures or to change the values in the key value
pairs.

Creating and Using Structures 127
Creating and Using Structures
This section explains how to use the structure functions to create and use structures
in ColdFusion. The sample code in this section uses a structure called employee,
which is used to add new employees to a corporate information system.

Creating structures
You create structures by assigning a variable name to the structure with the
StructNew function:

<cfset mystructure=StructNew()>

For example, to create a structure named employee, use this syntax:

<cfset employee=StructNew()>

Now the structure exists and you can add data to it.

Adding data elements to structures
After you create a structure, you add key-value pairs to the structure using the
StructInsert function:

<cfset value=StructInsert(structure_name, key, value
[, AllowOverwrite])>

The AllowOverwrite parameter is optional and can be either True or False. You can
use it to specify whether an existing key should be overwritten. The default is False.

When adding string values to a structure, enclose the string in quotation marks. For
example, to add a key, John, with a value, Sales, to an existing structure called
Departments, use this syntax:

<cfset value=StructInsert(Departments, "John", "Sales")>

The following example shows how to add content to a sample structure named
employee, building the content of the value fields dynamically using form variables:

<cfset rc=StructInsert(employee, "firstname", "#FORM.firstname#")>
<cfset rc=StructInsert(employee, "lastname", "#FORM.lastname#")>
<cfset rc=StructInsert(employee, "email", "#FORM.email#")>
<cfset rc=StructInsert(employee, "phone", "#FORM.phone#")>
<cfset rc=StructInsert(employee, "department", "#FORM.department#")>

128 Chapter 8 Handling Complex Data with Structures
Updating values in structures
You can update structure element values in a cfset tag or a SructUpdate function.

Updating a structure with cfset

You can use the cfset tag to update structure values (but not keys). For example, the
following code uses cfset and Object.property notation to change John’s
department from Sales to Marketing. It then uses associative array notation to
change his department to Facilities. Each time the department changes, it outputs
the results:

<cfset departments=structnew()>
<cfset value=StructInsert(departments, "John", "Sales")>
<cfoutput>

Before the first change, John was in the #departments.John#
Department

</cfoutput>
<cfset Departments.John = "Marketing">
<cfoutput>

After the first change, John is in the #departments.John#
Department

</cfoutput>
<cfset Departments.John = "Facilities">
<cfoutput>

After the second change, John is in the #departments.John#
Department

</cfoutput>

Updating a structure with StructUpdate

You can also use the StructUpdate function to change the value associated with a
specific key. Because StructUpdate is a ColdFusion function, you must use it inside
a ColdFusion tag. In some cases, you can use the cfoutput or cfset tag. You can also
use the cfscript tag to tell ColdFusion to run a function. The following example
uses a StructUpdate function in a cfscript tag to change a structure value. Note
that you must follow a statement in a cfscript tag with a semicolon.

<cfset departments=structnew()>
<cfset value=StructInsert(departments, "John", "Sales")>
<cfoutput>

Before the change, John was in the #departments.John# Department

</cfoutput>
<cfscript>StructUpdate(Departments, "John", "Marketing"); </cfscript>
<cfoutput>

After the change, John is in the #departments.John# Department

</cfoutput>

For more information on using cfscript, see Chapter 13, “Extending ColdFusion
Pages with CFML Scripting” on page 243

Creating and Using Structures 129
Getting information about structures
To find out if a given value represents a structure, use the IsStruct function:

IsStruct(variable)

This function returns True if variable is a structure.

Structures are not indexed numerically, so to find out how many name-value pairs
exist in a structure, use the StructCount function, as in this example:

StructCount(employee)

To discover whether a specific Structure contains data, use the StructIsEmpty
function:

StructIsEmpty(structure_name)

This function returns True if the structure is empty and False if it contains data.

Finding a specific key and its value

To learn whether a specific key exists in a structure, use the StructKeyExists function:

StructKeyExists(structure_name, key)

If the name of the key is known in advance, you can use the ColdFusion function
IsDefined, as in this example:

<cfset temp=IsDefined("structure_name.key")>

But if the key is dynamic, or contains special characters, you must use the
StructKeyExists function:

<cfset temp=StructKeyExists(structure_name, key)>

You can also use the StructFind function to find a key and return its value, as in this
example:

<cfset keyvalue=StructFind(structure_name, key)>

Getting a list of keys in a structure

To get a list of the keys in a CFML structure, you use the StructKeyList function:

<cfset temp=StructKeyList(structure_name, [delimiter])>

The delimiter can be any delimiter, but the default is a comma (,).

The StructKeyArray function returns an array of keys in a structure:

<cfset temp=StructKeyArray(structure_name)>

Note
The StructKeyList and StructKeyArray functions do not return keys in any
particular order. Use the ListSort or ArraySort function to sort the results.

130 Chapter 8 Handling Complex Data with Structures
Copying structures
To copy a structure, use the StructCopy function. This function takes the name of
the structure that you want to copy and returns a new structure with all the keys and
values of the named structure.

StructCopy(structure)

This function throws an exception if structure does not exist.

Use the StructCopy function when you want to create a physical copy of a structure.
You can also use assignment to create a copy by reference.

Deleting structures
To delete an individual name-value pair in a structure, use the StructDelete
function:

StructDelete(structure_name, key [, indicatenotexisting])

This deletes the named key and its associated value. Note that the
indicatenotexisting parameter indicates whether the function returns False if the
named key does not exist. The default is False, which means that the function returns
Yes regardless of whether key exists. If you specify True for this parameter, the
function returns Yes if key exists and No if it does not.

You can also use the StructClear function to delete all the data in a structure but
keep the structure instance itself:

StructClear(structure_name)

Structure example
Structures are particularly useful for grouping together a set of variables under a
single name. In the following example, structures are used to collect information
from a form, structinsert.cfm, and to submit that information to a custom tag at
addemployee.cfm.

This examples show how you can use a structure to pass information to a custom tag,
named cf_addemployee. For information on creating and using custom tags, see
“Reusing Code” on page 171.

Example file structinsert.cfm
<!--- This example shows how to use the StructInsert
 function. It calls the cf_addemployee custom tag,
 which uses the addemployee.cfm file. --->

<html>
<head>
<title>Add New Employees</title>
</head>

Creating and Using Structures 131
<body>
<h1>Add New Employees</h1>

<!--- Action page code for the form at the bottom of this page --->

<!--- Establish parameters for first time through --->
<cfparam name="Form.firstname" default="">
<cfparam name="Form.lastname" default="">
<cfparam name="Form.email" default="">
<cfparam name="Form.phone" default="">
<cfparam name="Form.department" default="">

<!--- If at least the firstaname form field is passed, create
 a structure named employee and add values --->

<cfif #form.firstname# eq "">
 <p>Please fill out the form.
<cfelse>
 <cfoutput>
 <cfscript>
 employee=StructNew();
 StructInsert(employee, "firstname", "#FORM.firstname#");
 StructInsert(employee, "lastname", "#FORM.lastname#");
 StructInsert(employee, "email", "#FORM.email#");
 StructInsert(employee, "phone", "#FORM.phone#");
 StructInsert(employee, "department", "#FORM.department#");
 </cfscript>

<!--- Display results of creating the structure --->
 <p>First name is #StructFind(employee, "firstname")#</p>
 <p>Last name is #StructFind(employee, "lastname")#</p>
 <p>EMail is #StructFind(employee, "email")#</p>
 <p>Phone is #StructFind(employee, "phone")#</p>
 <p>Department is #StructFind(employee, "department")#</p>
 </cfoutput>

 <!--- Call the custom tag that adds employees --->
<cf_addemployee empinfo="#employee#">
</cfif>

<!--- The form for adding the new employee information --->
<hr>
<form action="structinsert.cfm" method="Post">
<p>First Name:
<input name="firstname" type="text" hspace="30" maxlength="30">
<p>Last Name:
<input name="lastname" type="text" hspace="30" maxlength="30">
<p>EMail:
<input name="email" type="text" hspace="30" maxlength="30">
<p>Phone:
<input name="phone" type="text" hspace="20" maxlength="20">
<p>Department:
<input name="department" type="text" hspace="30" maxlength="30">

<p>

132 Chapter 8 Handling Complex Data with Structures
<input type="Submit" value="OK">
</form>

</body>
</html>

Example file addemployee.cfm
<!--- This file is an example of a custom tag used to add employees.
Employee information is passed through the employee structure (the
empinfo attribute). For databases that do not support automatic key
generation, you must also add the Emp_ID. --->

<cfif structisempty(attributes.empinfo)>
<cfoutput>Error. No employee data was passed.</cfoutput>
<cfexit method="ExitTag">

<cfelse>
<!--- Add the employee --->
<!--- If auto key generation is not supported,

you must also add the Emp_ID --->
<cfquery name="AddEmployee" datasource="cfsnippets">

INSERT INTO Employees
(FirstName, LastName, Email, Phone, Department)
VALUES
<cfoutput>
(
’#StructFind(attributes.empinfo, "firstname")#’ ,
’#StructFind(attributes.empinfo, "lastname")#’ ,
’#StructFind(attributes.empinfo, "email")#’ ,
’#StructFind(attributes.empinfo, "phone")#’ ,
’#StructFind(attributes.empinfo, "department")#’
)
</cfoutput>

</cfquery>
</cfif>
<cfoutput><hr>Employee Add Complete</cfoutput>

Looping through structures
You can loop through a structure to output its contents as illustrated in the following
example. Note that when you enumerate key-value pairs using a loop, the keys
appear in uppercase.

<!--- Create a structure and set its contents --->
<cfset departments=structnew()>

<cfset val=StructInsert(departments, "John", "Sales")>
<cfset val=StructInsert(departments, "Tom", "Finance")>
<cfset val=StructInsert(departments, "Mike", "Education")>

<!--- Build a table to display the contents --->
<cfoutput>

Structure Functions 133
<table cellpadding="2" cellspacing="2">
<tr>
<td>Employee</td>
<td>Department</td>
</tr>

<!--- In cfloop, use item to create a variable
called person to hold value of key as loop runs --->
<cfloop collection=#departments# item="person">

<tr>
<td>#person#</td>
<td>#Departments[person]#</td>
</tr>

</cfloop>

</table>
</cfoutput>

Structure Functions
Use the following functions to create and manage structures in ColdFusion
applications:

Function Description

IsStruct Returns True if the specified variable is a structure.

StructClear Removes all data from the specified structure.

StructCopy Returns a new structure with all the keys and values of the
specified structure.

StructCount Returns the number of keys in the specified structure.

StructDelete Removes the specified item from the specified structure.

StructFind Returns the value associated with the specified key in the
specified structure.

StructInsert Inserts the specified key-value pair into the specified
structure.

StructIsEmpty Indicates whether the specified structure contains data.
Returns True if the structure contains no data, and False if it
does contain data.

StructKeyArray Returns an array of keys in the specified structure.

StructKeyExists Returns True if the specified key is in the specified structure.

StructKeyList Returns a list of keys in the specified structure.

StructNew Returns a new structure.

StructUpdate Updates the specified key with the specified value.

134 Chapter 8 Handling Complex Data with Structures
Note that in all cases, except StructDelete, an exception is thrown if the referenced
key or structure does not exist.

For more information on these functions, see the CFML Reference.

Chapter 9

Building Dynamic Forms
This chapter shows you how to use the cfform tag to enrich your forms with
sophisticated graphical controls, including several Java applet-based controls. You
can use these controls without writing a line of Java code.

Contents

• Creating Forms with the cfform Tag .. 136

• Input Validation with cfform Controls .. 139

• Input Validation with JavaScript .. 144

• Building Tree Controls with cftree ... 147

• Structuring Tree Controls ... 150

• Embedding URLs in a cftree... 152

• Creating Data Grids with cfgrid ... 153

• Creating an Updateable Grid ... 155

• Building Slider Bar Controls ... 164

• Building Text Entry Boxes ... 165

• Building Drop-Down List Boxes... 166

• Embedding Java Applets ... 167

136 Chapter 9 Building Dynamic Forms
Creating Forms with the cfform Tag
You already learned how to use HTML forms to gather user input (see “Using Forms
to Specify the Data to Retrieve” on page 40). This chapter shows you how to use the
cfform tag to create dynamic forms in CFML. In addition to HTML control types,
you can use cfform to create forms that contain controls such as:

• Text boxes in which you can specify the appearance, such as fonts and colors

• Predefined ColdFusion Java applet based controls, including trees, sliders, and
grids

• Custom Java applets that act as form elements

With cfform, you can access these Java applet-based controls without knowing the
Java language, and you do not have to juggle cfoutput tags and HTML form tags to
reference ColdFusion variables in your forms.

In addition, most cfform controls offer input validation attributes you can use to
validate a user’s entry, selection, or interaction. This means you do not have to write
separate CFML code specifically for input validation, as you do in HTML forms.

Using HTML and cfform
ColdFusion generates HTML forms dynamically from cfform tags and passes
through to the browser any HTML code it finds in the form. As a result, you can also
do the following:

• You can use the HTML form tag and form control tags in combination with the
cfform tag.

• You can use the passthrough attribute of the cfform, cfinput, and cfselect tags
to enter any HTML attributes that are not explicitly allowed in these tags. The
attribute values are passed through to the HTML generated by these form tags.

• You can replace your existing HTML form tags with cfform and your forms will
work fine.

Creating Forms with the cfform Tag 137
cfform controls
The following table describes the controls ColdFusion controls you use in forms
created using cfform:

Preserving input data with preservedata
The cfform attribute preservedata tells ColdFusion to continue displaying the data
that a user entered in the form after the user submits the form. Data is preserved in
the cftext, cfslider, cftextinput, and cftree controls and in cfselect controls
populated by queries. You can retain data on the form in the following
circumstances:

• The form and action are on a single cfml page.

• The action page has a form that contains controls with the same names as the
corresponding controls on the form page.

For example, if you save this form as preseve.cfm, it continues to display any text that
you enter after you submit it:

<cfform action="preserve.cfm" method="POST" preservedata="Yes">
<p>Please enter your name:
<cfinput type="Text" name="UserName" required="Yes">
<p><input type="Submit" name=""> <input type="RESET">
</cfform>

Control Description

cfgrid A Java applet-based control that creates a data grid you can
populate from a query or by defining the contents of individual cells.
You can also use grids to insert, update, and delete records from a
data source.

cfslider A Java applet-based control that defines a slider.

cfinput Places radio buttons, check boxes, text input boxes, and password
entry boxes in your form (not a Java applet).

cftree and
cftreeitem

Java applet-based controls that define a tree control and individual
tree control items.

cftextinput A Java applet-based control that defines a text input box.

cfselect Defines a drop-down list box not a Java applet).

cfapplet Embed your own Java applets in the form.

138 Chapter 9 Building Dynamic Forms
Usage notes

• In cftree, the preservedata attribute causes the tree to expand the tree to the
previously selected element. For this to work correctly, you must also set the
completePath attribute to True.

• The preservedata attribute has no effect on cfgrid. If you populate the control
from a query, you should update the data source with the new data (typically by
using cfgridupdate) before redisplaying the grid. The grid then displays the
updated database information.

Browser considerations
The applet-based controls for cfform—cfgrid, cfslider, cftextinput, and
cftree—use JavaScript and Java to display their content. To allow them to display
consistently across a variety of browsers, these applets use the Java plug-in, and not
the browser’s native Java runtime. As a result, they are independent of the level of
Java support provided by the browser.

ColdFusion downloads and installs the browser plug-in if necessary. Some browsers
display a single permission dialog box asking you to confirm the plug-in install.
Other browsers, particularly older versions of Netscape, require you to navigate
some simple option screens.

Because the controls use JavaScript to return data to ColdFusion, if you disable
JavaScript in your browser it cannot properly run forms that contain these controls.
In that case, the controls still display, but data return and validation does not work
and you may receive a JavaScript error.

Because Java is handled by the plug-in and not directly by the browser, disabling
Java execution in the browser should not affect the operation of the controls. If for
some other reason, however, the browser is unable to render the controls as
requested, a "notsupported" message displays in place of the control.

You can use the cfform tag’s notsupported attribute to specify an alternate error
message.

Input Validation with cfform Controls 139
Input Validation with cfform Controls
The cfinput and cftextinput tags include the validate attributes which allows you
to specify a valid data entry type for the control. You can validate user entries on the
following data types.

When you specify an input type in the validate attribute, ColdFusion tests for the
specified input type when you submit the form, and submits form data only on a
successful match. A successful form submission returns the value True and returns
the value False if validation fails.

Data type Description

Date Verifies US date entry in the form mm/dd/yyyy (where
the year can have one through four digits).

Eurodate Verifies valid European date entry in the form dd/mm/
yyyy (where the year can have one through four
digits).

Time Verifies a time entry in the form hh:mm:ss.

Float Verifies a floating point entry.

Integer Verifies an integer entry.

Telephone Verifies a telephone entry. You must enter telephone
data as ###-###-####. You can replace the hyphen
separator (-) with a blank. The area code and
exchange must begin with a digit between 1 and 9.

Zipcode (U.S. formats only) Number can be a 5-digit or 9-digit
zip in the form #####-####. You can replace the
hyphen separator (-) with a blank.

Creditcard Blanks and dashes are stripped and the number is
verified using the mod10 algorithm.

Social_security_number You must enter the number as ###-##-####. You can
replace the hyphen separator (-) with a blank.

Regular_expression Matches the input against a JavaScript regular
expression pattern. You must use the pattern
attribute to specify the regular expression. Any entry
containing characters that matches the pattern is valid.

140 Chapter 9 Building Dynamic Forms
Validating with regular expressions
You can use regular expressions to match and validate the text that users enter in
cfinput and cftextinput tags. Ordinary characters are combined with special
characters to define the match pattern. The validation succeeds only if the user input
matches the pattern.

Regular expressions allow you to check input text for a wide variety of conditions. For
example, if a date field must only contain dates between 1950 and 2050, you can
create a regular expression that matches only numbers in that range. You can
concatenate simple regular expressions into complex search criteria to validate
against complex patterns, such as any of several words with different endings.

You can use ColdFusion variables and functions in regular expressions. The
ColdFusion Server evaluates the variables and functions before the regular
expression is evaluated. For example, you can validate against a value that you
generate dynamically from other input data or database values.

Note
The rules listed in this section are for JavaScript regular expressions, and apply to the
regular expressions used in cfinput and cftextinput tags only. These rules differ
from those used by the ColdFusion functions REfind, REreplace, REfindnocase, and
RERplacenocase and in ColdFusion Studio. For information on regular expressions
used in ColdFusion functions, see “Using Regular Expressions in Functions” on page
259.

Special characters

Because special characters are the operators in regular expressions, in order to
represent a special character as an ordinary one, you need to precede it with a
backslash. For example, use a double backslash (\\) to represent a backslash.

Single-character regular expressions

The following rules govern regular expressions that match a single character:

• Special characters are: + * ? . [^ $ () { | \

• Any character that is not a special character or escaped by being preceded by the
backslash (\) matches itself.

• A backslash (\) followed by any special character matches the literal character
itself, that is, the backslash escapes the special character.

• A period (.) matches any character except newline.

• A set of characters enclosed in brackets ([]) is a one-character regular expression
that matches any of the characters in that set. For example, "[akm]" matches an
"a", "k", or "m". Note that if you want to include] (closing square bracket) in
square brackets it must be the first character. Otherwise, it does not work even if
you use \].

• A dash can indicate a range of characters. For example, "[a-z]" matches any
lowercase letter.

Input Validation with cfform Controls 141
• If the first character of a set of characters in bracket is the caret (^), the expression
matches any character except those in the set. It does not match the empty
string. For example: [^akm] matches any character except "a", "k", or "m". The
caret loses its special meaning if it is not the first character of the set.

• You can make regular expressions case insensitive by substituting individual
characters with character sets, for example, [Nn][Ii][Cc][Kk].

• You can use the following escape sequences to match specific characters or
character classes:

Multicharacter regular expressions

Use the following rules to build a multicharacter regular expression:

• Parentheses group parts of regular expressions together into a subexpression that
can be treated as a single unit. For example, (ha)+ matches one or more instances
of "ha".

• A one-character regular expression or grouped subexpression followed by an
asterisk (*) matches zero or more occurrences of the regular expression. For
example, [a-z]* matches zero or more lowercase characters.

Escape
Seq

Matches Escape
Seq

Meaning

[\b] Backspace \s Any of the following white space
characters: space, tab, form feed,
and line feed.

\b A word boundary such as a
space

\S Any character except the white
space characters matched by \s

\B A non-word boundary \t Tab

\cX The control character Ctrl-x. For
example, \cv matches Ctrl-v, the
usual control character for
pasting text.

\v Vertical tab

\d A digit character [0-9] \w An alphanumeric character or
underscore. The equivalent of
[A-Za-z0-9_]

\D Any character except a digit \W Any character not matched by \w.
The equivalent of [^A-Za-z0-9_]

\f Form feed \n a backreference to the nth
expression in parentheses. See
“Backreferences”

\n Line feed \ooctal The character represented in the
ASII character table by the
specified octal number

\r Carriage return \xhex The character represented in the
ASCII character table by the
specified hexadecimal number

142 Chapter 9 Building Dynamic Forms
• A one-character regular expression or grouped subexpression followed by a plus
(+) matches one or more occurrences of the regular expression. For example,
[a-z]+ matches one or more lowercase characters.

• A one-character regular expression or grouped subexpression followed by a
question mark (?) matches zero or one occurrences of the regular expression. For
example, xy?z matches either "xyz" or "xz".

• The carat (^) at the beginning of a regular expression matches the beginning of
the field.

• The dollar sign ($) at the end of a regular expression matches the end of the field.

• The concatenation of regular expressions creates a regular expression that
matches the corresponding concatenation of strings. For example, [A-Z][a-z]*
matches any capitalized word.

• The OR character (|) allows a choice between two regular expressions. For
example, jell(y|ies) matches either "jelly" or "jellies".

• Braces ({}) are used to indicate a range of occurrences of a regular expression, in
the form {m, n} where m is a positive integer equal to or greater than zero
indicating the start of the range and n is equal to or greater than m, indicating the
end of the range. For example, (ba){0,3} matches up to three pairs of the
expression "ba". The form {m,} requires at least m occurrences of the preceding
regular expression. The form {m} requires exactly m occurrences of the preceding
regular expression.The syntax {,n} is not allowed.

Backreferences

Backreferencing allows you to match text in previously matched sets of parentheses.
A slash followed by a digit n (\n) refers to the nth parenthesized subexpression.

One example of how you can use backreferencing is searching for doubled words; for
example, to find instances of ‘the the’ or ‘is is’ in text. The following example shows
the syntax you use for backreferencing in regular expressions:

(\b[A-Za-z]+)[]+\1

This code matches text that contains a word (specified by the \b word boundary
special character and the [A-Za-z]+) followed by one or more spaces []+, followed by
the first matched subexpression in parentheses. For example, it would match “is is,
or “This is is”, but not “This is”.

Exact and partial matches

Entered data is normally valid if any of it matches the regular expression pattern.
Often you might want to make sure that the entire entry matches the pattern. If so,
you must “anchor” it to the beginning and end of the field as follows:

• If a caret (^) is at the beginning of a pattern, the field must begin with a string that
matches the pattern.

• If a dollar sign ($) is at the end of pattern, the field must end with a string that
matches the pattern.

• If the expression starts with a caret and ends with a dollar sign, the field must
exactly match the pattern.

Input Validation with cfform Controls 143
Expression examples

The following examples show some regular expressions and describe what they
match:

Resources

An excellent reference on regular expressions is Mastering Regular Expressions by
Jeffrey E.F. Friedl, published by O’Reilly & Associates, Inc.

Expression Description

[\?&]value= Any string containing a URL parameter
value.

^[A-Z]:(\\[A-Z0-9_]+)+$ An uppercase DOS/Windows directory
path that is not the root of a drive and has
only letters, numbers, and underscores in
its text.

^(\+|-)?[1-9][0-9]*$ An integer that does not begin with a zero
and has an optional sign.

^(\+|-)?[1-9][0-9]*(\.[0-9]*)?$ A real number.

^(\+|-)?[1-9]\.[0-9]*E(\+|-)?[0-9]+$A real number in engineering notation.

a{2,4} A string containing two to four
occurrences of ’a’: aa, aaa, aaaa; for
example aardvark, but not automatic.

(ba){2,} A string containing least two ’ba’ pairs; for
example Ali baba, but not Ali Baba.

144 Chapter 9 Building Dynamic Forms
Input Validation with JavaScript
In addition to native ColdFusion input validation using the validate attribute of the
cfinput and cftextinput tags, the following tags support the onvalidate attribute,
which allows you to specify a JavaScript function to handle your cfform input
validation:
• cfgrid

• cfinput
• cfslider

• cftextinput
• cftree

ColdFusion passes the following JavaScript objects to the JavaScript function you
specify in the onvalidate attribute:

• form_object (the form)

• input_object (the tag whose value is being validated)

• object_value (the value to validate)

Handling failed validation
The onerror attribute allows you to specify a JavaScript function to execute if a
validation fails. For example, if you use the onvalidate attribute to specify a
JavaScript function to handle input validation, you can also use the onerror
attribute to specify a JavaScript function to handle a failed validation (that is, when
onvalidate returns a false value). If you are using the validate attribute you can
also use the onerror attribute to specify a JavaScript function handle validation
errors. The following cfform tags support the onerror attribute:
• cfgrid

• cfinput

• cfselect
• cfslider

• cftextinput

• cftree

ColdFusion passes the following JavaScript objects to the function in the onerror
attribute:

• form_object

• input_object

• object_value

• error message text

Example: validating an e-mail address
The following example validates an e-mail entry. If the string is invalid it displays a
message box. If the address is valid it redisplays the page.

Input Validation with JavaScript 145
To use JavaScript to validate form data:

1 Create a new file in ColdFusion Studio.

2 Edit the page so that it appears as follows:

<html>
<head>

<title>JavaScript Validation</title>

<script>
<!--
function testbox(form) {
Ctrl = form.inputbox1;

if (Ctrl.value == "" || Ctrl.value.indexOf (’@’, 1) == -1 ||
Ctrl.value.indexOf (’.’, 3) == -1)

{
return (false);

}
else
{

return (true);
}

}
//-->
</script>

</head>

<body>
<h2>JavaScript validation test</h2>

<p>Please enter your email address:</p>
<cfform name="UpdateForm" preservedata="Yes"

action="validjs.cfm" >

<cfinput type="text"
name="inputbox1"
required="YES"
onvalidate="testbox"
message="Sorry, your entry is not a valid email address."
size="15"
maxlength="30">

<input type="Submit" value=" Update... ">
</cfform>

</body>
</html>

3 Save the page as validjs.cfm.

4 View validjs.cfm in your browser.

146 Chapter 9 Building Dynamic Forms
Reviewing the code

The following table describes the highlight code and its function:

See the following Web site for information on JavaScript validation scripts: http://
www.dannyg.com/javascript.

Code Description

<script>
<!--
function testbox(form) {
Ctrl = Form.inputbox1;

if (Ctrl.value == "" ||
Ctrl.value.indexOf (’@’, 1) == -1 ||
Ctrl.value.indexOf (’.’, 3) == -1)

{
return (false);

}
else
{

return (true);
}

}
//-->
</script>

JavaScript code to test for valid
entry in the text box. The if
statement checks to making
sure that the field is not empty
and contains an at sign (@) that
at least the second character
and a period (.) that is at least
the fourth character.

onvalidate="testbox" Calls the JavaScript testbox
function to validate entries in this
control.

message="Sorry, your entry is not a valid
email address."

Message to display if the
validation function returns a
false value.

Building Tree Controls with cftree 147
Building Tree Controls with cftree
The cftree form lets you display hierarchical information in a space-saving
collapsible tree populated from data source queries. To build a tree control with
cftree, you use individual cftreeitem tags to populate the control. You can specify
one of six built-in icons to represent individual items in the tree control, or supply a
URL to your own gif image.

To create and populate a tree control from a query:

1 Open a new file named tree1.cfm in ColdFusion Studio.

2 Modify the page so that it appears as follows:

<cfquery name="engquery" datasource="CompanyInfo">
SELECT FirstName + ’ ’ + LastName AS FullName
FROM Employee

</cfquery>
<cfform name="form1" action="submit.cfm"

method="Post">
<cftree name="tree1"

required="Yes"
hscroll="No">
<cftreeitem value=fullname

query="engquery"
queryasroot="Yes"
img="folder,document">

</cftree>
</cfform>

3 Save the page and view it in your browser.

Reviewing the code

The following table describes the highlight code and its function:

Code Description

<cftree name="tree1" Create a tree and name it tree1.

required="Yes" Specify that a user must select an item in the tree.

hscroll="No" Don’t allow horizontal scrolling.

<cftreeitem value=FullName
query="engquery"

Create an item in the tree and put the results of the
query named engquery in it. Because this tag uses
a query, it puts one item on the tree per query entry.

queryasroot="Yes" Specify the query name as the root level of the tree
control.

img="folder,document" Use the images "folder" and "document" that ship
with ColdFusion in the tree structure.

148 Chapter 9 Building Dynamic Forms
Grouping output from a query
In a query that you display using a cftree control, you might want to organize your
employees by the department. In this case, you separate column names with
commas in the cftreeitem value attribute.

To organize the tree based on ordered results of a query:

1 Open a new file named tree2.cfm in ColdFusion Studio.

2 Modify the page so that it appears as follows:

<!--- CFQUERY with an ORDER BY clause --->
<cfquery name="deptquery" datasource="CompanyInfo">

SELECT Dept_ID, FirstName + ’ ’ + LastName
AS FullName
FROM Employee
ORDER BY Dept_ID

</cfquery>

<!--- Build the tree control --->
<cfform name="form1" action="submit.cfm"

method="Post">

<cftree name="tree1"
hscroll="No"
border="Yes"
height="350"
required="Yes">

<cftreeitem value="Dept_ID, FullName"
query="deptquery"
queryasroot="Dept_ID"
img="cd,folder">

</cftree>

<input type="Submit" value="Submit">
</cfform>

3 Save the page and view it in your browser.

Building Tree Controls with cftree 149
Reviewing the code

The following table describes the highlight code and its function:

Note that the cftreeitem comma-separated img and the value attributes both
correspond to the tree level structure. If you leave out the img attribute, ColdFusion
uses the folder image for all levels in the tree except the individual items, which have
bullets.

cftree form variables
The cftree tag allows you to force a user to select an item from the tree control by
setting the required attribute to Yes. With or without the required attribute,
ColdFusion passes two form variables to the application page specified in the cftree
action attribute:

• Form.treename.node Returns the node of the user selection.

• Form.treename.path Returns the complete path of the user selection, in the
form: [root]\node1\node2\node_n\value

To return the root part of the path, set the completepath attribute of cftree to Yes;
otherwise, the path value starts with the first node. If you specify a root name in
queryastroot, that value gets returned as the root.

In the previous example, if the user selects the name "John Allen" in the tree, the
following form variables are returned by ColdFusion:

Form.tree1.node = John Allen
Form.tree1.path = Dept_ID\3\John Allen

You can specify the character used to delimit each element of the path form variable
in the cftree delimiter attribute. The default is a backslash.

Input validation
Although, the cftree does not include a validate attribute, you can use the
required attribute to force a user to select an item from the tree control. In addition,
you can use the onvalidate attribute to specify the JavaScript code to perform
validation.

Code Description

ORDER BY Dept_ID Order the query results by department.

<cftreeitem value="Dept_ID,
FullName"

Populate the tree with the Department ID, and under
each department, the Full Name for each employee
in the department.

queryasroot="Dept_ID" Label the root "Dept_ID".

img="cd,folder"> Use the ColdFusion-supplied CD image for the root
level and Folder image for the department IDs. The
names are preceded by a bullet.

150 Chapter 9 Building Dynamic Forms
Structuring Tree Controls
Tree controls built with cftree can be very complex. Knowing how to specify the
relationship between multiple cftreeitem entries will help you handle even the
most complex of cftree constructs.

Example: one-level tree control

This example consists of a single root and a number of individual items:

<cfquery name="deptquery" datasource="CompanyInfo">
SELECT Dept_ID, FirstName + ’ ’ + LastName
AS FullName
FROM Employee
ORDER BY Dept_ID
</cfquery>

<cfform name="form1" action="submit.cfm">
<cftree name="tree1">

<cftreeitem value="FullName"
query="deptquery"
queryasroot="Department">

</cftree>

<input type="submit" value="Submit">
</cfform>

Example: multilevel tree control

When populating a cftree, you manipulate the structure of the tree by specifying a
cftreeitem parent. In this example, every cftreeitem, except the top level, specifies
a parent. The parent attribute allows your cftree to show the relationships between
elements in the tree control. (This example populates the tree directly, not with a
query.)

<cfform name="form2" action="cfform_submit.cfm"
method="Post">

<cftree name="tree1" hscroll="No" vscroll="No"
border="No">
<cftreeitem value="Divisions">
<cftreeitem value="Development"

parent="Divisions" img="folder">
<cftreeitem value="Product One"

parent="Development">
<cftreeitem value="Product Two"

parent="Development">
<cftreeitem value="GUI"

parent="Product Two" img="document">
<cftreeitem value="Kernel"

parent="Product Two" img="document">
<cftreeitem value="Product Three"

parent="Development">
<cftreeitem value="QA"

Structuring Tree Controls 151
parent="Divisions" img="folder">
<cftreeitem value="Product One"

parent="QA">
<cftreeitem value="Product Two" parent="QA">
<cftreeitem value="Product Three"

parent="QA">
<cftreeitem value="Support"

parent="Divisions" img="fixed">
<cftreeitem value="Product Two"

parent="Support">
<cftreeitem value="Sales"

parent="Divisions" img="cd">
<cftreeitem value="Marketing"

parent="Divisions" img="document">
<cftreeitem value="Finance"

parent="Divisions" img="element">
</cftree>

</cfform>

Image names in a cftree
When you use the img attribute, ColdFusion displays the specified image beside the
tree items. You can specify a built-in ColdFusion image name or the URL of an image
of your choice, such as http://localhost/Myapp/Images/Level3.gif. As a general rule,
your custom images should be less than 20 pixels high.

The built-in image names are:

• cd

• computer

• document

• element

• folder

• floppy

• fixed

• remote

Note
You can also control the tree appearance by using the lookAndFeel attribute to
specify a Windows, Motif, or Metal look.

152 Chapter 9 Building Dynamic Forms
Embedding URLs in a cftree
The href attribute in the cftreeitem tag allows you to designate tree items as links.
To use this feature in a cftree, you simply define the destination of the link in the
href attribute of cftreeitem. The URL for the link can be a relative URL or an
absolute URL as in the following examples.

To embed links in a cftree:

1 Open a new file named tree3.cfm in ColdFusion Studio.

2 Modify the page so that it appears as follows:

<cfform action="submit.cfm">

<cftree name="oak"
highlighthref="Yes"
height="100"
width="200"
hspace="100"
vspace="6"
hscroll="No"
vscroll="No"
border="No">

<cftreeitem value="Important Links">
<cftreeitem value="Macromedia Home"

parent="Important Links"
img="document"
href="http://www.macromedia.com">

<cftreeitem value="ColdFusion Home"
parent="Important Links"
img="document"
href="http://www.coldfusion.com">

</cftree>
</cfform>

3 Save the page and view it in your browser.

Reviewing the code

The following table describes the highlight code and its function:

Code Description

href="http://
www.macromedia.com">

Make the node of the tree a link.

href="http://
www.cofldusion.com">

Make the node of the tree a link.

Note that, although this example does not show it, href
can refer to the name of a column in a query if the tree
item is populated from that query.

Creating Data Grids with cfgrid 153
Specifying the tree item in the URL
When a user clicks on a tree item to link to a URL the cftreeItemKey variable, which
identifies the selected value, is appended to the URL in the form:

http://myserver.com?cftreeitemkey =selected_value

Automatically passing the name of the selected tree item as part of the URL makes it
easy to implement a basic "drill down" application that displays additional
information based on the selection. For example, if the specified URL is another
CFML page, it can access the selected value as the variable URL.cfteeitemkey.

You can disable this behavior by setting the appendkey attribute in the cftree tag to
No.

Creating Data Grids with cfgrid
The cfgrid tag to creates a cfform grid control. A grid control resembles a
spreadsheet table and can contain data populated from a cfquery or from other
sources of data. As with other cfform tags, cfgrid offers a wide range of data
formatting options as well as the option of validating user selections with a
JavaScript validation script.

You can also do the following with cfgrid:

• Sort data in the grid alphanumerically

• Update, insert, and delete data

• Display images in the grid

Users can sort the grid entries in ascending order by double-clicking any column
header. Double-clicking again sorts the grid in descending order. You can also add
sort buttons to the grid control.

When users select grid data and submit the form, ColdFusion passes the selection
information as form variables to the application page specified in the cfform action
attribute.

Just as the cftree tag uses cftreeitem, cfgrid uses the cfgridcolumn tag. You can
define a wide range of row and column formatting options, as well as a column
name, data type, selection options, and so on. You use the cfgridcolumn tag to
define individual columns in the grid or associate a query column with a grid
column.

The cfgrid tag provides many attributes that control grid behavior and appearance.
This document can only cover the most important of these. For detailed information
on these attributes, see the CFML Reference.

154 Chapter 9 Building Dynamic Forms
Populating a grid from a query

To populate a grid from a query:

1 Open a new file named grid1.cfm in ColdFusion Studio.

2 Edit the file so that it appears as follows:

<cfquery name="empdata" datasource="CompanyInfo">
SELECT * FROM Employee

</cfquery>

<cfform name="Form1" action="submit.cfm" method="Post">

<cfgrid name="employee_grid" query="empdata"
selectmode="single">

<cfgridcolumn name="Emp_ID">
<cfgridcolumn name="LastName">
<cfgridcolumn name="Dept_ID">

</cfgrid>

<input type="Submit" value="Submit">
</cfform>

Note
Use the cfgridcolumn display="No" attribute to hide columns you want to
include in the grid but not expose to an end user. You would typically use this
attribute to include columns such as the table’s primary key column in the results
returned by cfgrid without exposing this data to the user.

3 Save the file and view it in your browser.

Reviewing the code

The following table describes the highlight code and its function:

Code Description

<cfgrid name="employee_grid"
query="empdata"

Create a grid named "employee_grid" and
populate it with the results of the query
"empdata".

selectmode="single"> Allow the user to select only one cell. Other
modes are row, column and edit.

<cfgridcolumn NAME="Emp_ID"> Put the contents of the Emp_ID column in the
query results in the first column of the grid.

<cfgridcolumn
NAME="LastName">

Put the contents of the LastName column in the
query results in the second column of the grid.

<cfgridcolumn name="Dept_ID"> Put the contents of the Dept_ID column in the
query results in the third column of the grid.

Creating an Updateable Grid 155
Note
If you specify a cfgrid tag with a query attribute defined and no corresponding
cfgriditem attributes the grid contains all the columns in the query.

Creating an Updateable Grid
You can build grids to allow users to edit data within them. Users can edit individual
cell data, as well as insert, update, or delete rows. To enable grid editing, you specify
selectmode="edit" in the cfgrid tag and enable the insert or delete attributes in
cfgrid.

You can use an updateable grid in either of two ways to make changes to your
ColdFusion data sources:

• Create a page to which you pass the cfgrid form variables. In that page perform
cfquery operations to update data source records base on the form values
returned by cfgrid.

• Pass grid edits to a page that includes the cfgridupdate tag, which automatically
extracts the form variable values and passes that data directly to the data source.

Using cfquery gives you complete control over interactions with your data source.
The cfgridupdate tag provides a much simpler interface for operations that do not
require the same level of control.

Navigating and entering data in a grid
Navigating and using the cfgrid control is fairly straightforward, but here are a few
tips:

• To sort grid rows so that a column is in ascending order by double-clicking the
column header. Double-clicking again sorts the rows in descending order.

• To rearrange the columns, click any column heading and drag the column to a
new position.

• When you click a cell (or row or column) that you cannot edit, its background
color changes. The default color is a salmon pink.

• When you click a cell that you can edit, it is surrounded by a yellow box.

• To edit a cell, Double-click it. You must press Return when you finish entering
the data.

• To delete a row, click any cell in the row and click the Delete button.

• To insert a row, click the Insert button. An empty row appears at the bottom of
the grid. To enter a value in each cell, double-click the cell, enter the value, and
click Return.

156 Chapter 9 Building Dynamic Forms
Controlling cell contents
The cfgridcolumn type, value, valuesDisplay, and valuesDelimiter attributes let
you control the data that a user can enter into a cfgrid cell in the following ways:

• By default, a cell is an editable text field.

• Use the type attribute to require numeric or string data, to make the fields check
boxes, or to display an image.

• Use the values attribute to specify a drop-down list of values from which the user
can chose. You can use the valuesDisplay attribute to provide a list of items to
display that differs from the actual values that you enter in the database. You can
use the valuesDelimiter attribute to specify the separator between values in the
values valuesDisplay lists.

• While cfgrid does not have a validate attribute, it does have an onvalidate
attribute that lets you specify a JavaScript function to perform validation.

For more information on controlling the cell contents, see the attribute descriptions
in the CFML Reference.

How user edits are returned
ColdFusion creates the following arrays as Form variables to return edits to grid rows

and cells:

When a user selects and changes data in a row, ColdFusion creates arrays to store the
following information for rows that are updated, inserted, or deleted:

• The original values for all columns

• The new column values

• The type of change

For example, the following arrays are created if you an update a cfgrid called
"mygrid" consisting of two displayable columns, (col1, col2) and one hidden column
(col3).

Form.mygrid.col1[change_index]
Form.mygrid.col2[change_index]
Form.mygrid.col3[change_index]
Form.mygrid.original.col1[change_index]
Form.mygrid.original.col2[change_index]
Form.mygrid.original.col3[change_index]
Form.mygrid.RowStatus.Action[change_index]

Array reference Description

gridname.colname[change_index] Stores the new value of an edited cell.

gridname.Original.colname
[change_index]

Stores the original value of the edited grid cell.

gridname.RowStatus.Action
[change_index]

Stores the edit type made to the edited grid
row: D for delete, I for insert, or U for update.

Creating an Updateable Grid 157
The value of change_index increments for each row that changes, and does not
indicate the specific row number. When the user updates data or inserts or deletes
rows, the action page gets one array for each changed column, plus the
RowStatsus.Action array. The action page does not get arrays for unchanged
columns.

If the user makes a change to a single cell in col2, you can access the edit operation,
the original cell value, and the edited cell value in the following arrays:

Form.mygrid.RowStatus.Action[1]
Form.mygrid.col2[1]>
Form.mygrid.original.col2[1]>

If the user changes the values of the cells in col1 and col3 in one row and the cell in
col2 in another row, the information about the original and changed values is in the
following array entries:

Form.mygrid.RowStatus.Action[1]>

Form.mygrid.col1[1]>

Form.mygrid.original.col1[1]>
Form.mygrid.col3[1]>

Form.mygrid.original.col3[1]>

Form.mygrid.RowStatus.Action[2]>

Form.mygrid.col2[2]>

Form.mygrid.original.col2[2]>

Editing data in cfgrid
To enable grid editing, specify the selectmode="edit" attribute. When enabled, a
user can edit cell data and insert or delete grid rows. When the user submits a cfform
containing a cfgrid, data about changes to grid cells gets returned in the
one-dimensional arrays described in the preceding section. You can reference these
arrays as you would any other ColdFusion array.

Note
For the sake of code brevity, the following example handles only three of the fields in
the Employee table. A more realistic example would, at a minimum, include all seven
of the table’s fields. You might also consider hiding the contents of the Emp_ID
column and automatically generating its value for new records, and displaying the
Department name, from the Departmt table, in place of the Department ID.

158 Chapter 9 Building Dynamic Forms
To make the grid editable:

1 Open the file grid1.cfm in ColdFusion Studio.

2 Edit the file so that it appears as follows:

<cfquery name="empdata" datasource="CompanyInfo">
SELECT * FROM Employee

</cfquery>

<cfform name="GridForm"
action="handle_grid.cfm">

<cfgrid name="employee_grid"
height=300
width=250
vspace=10
selectmode="edit"
query="empdata"
insert="Yes"
delete="Yes">

<cfgridcolumn name="Emp_ID"
header="Emp ID"
width=50
headeralign="center"
headerbold="Yes"
select="No">

<cfgridcolumn name="LastName"
header="Last Name"
width=100
headeralign="center"
headerbold="Yes">

<cfgridcolumn name="Dept_ID"
header="Dept"
width=35
headeralign="center"
headerbold="Yes">

</cfgrid>

<input type="Submit" value="Submit">

</cfform>

3 Save the file as grid2.cfm.

Creating an Updateable Grid 159
Reviewing the code

The following table describes the code and its function:

Updating the database with cfgridupdate
The cfgridupdate tag provides a simple mechanism for updating the database,
including inserting and deleting records. It can add, update, and delete records
simultaneously. It is particularly convenient because it automatically handles
collecting the cfgrid changes from the various form variables and generates
appropriate SQL statements to update your data source.

In most cases, you should use cfgridupdate to update your database. However, this
tag does not provide the complete SQL control that cfquery provides. In particular:

• It can update only a single table.

• You have no control over the order of changes. Rows are deleted first, then rows
are inserted, then any changes are made to existing rows.

• Updating stops when an error occurs. It is possible that some database changes
are made, but the tag does not provide any information on them.

Code Description

<cfgrid name="employee_grid"
height=300
width=250
vspace=10
selectmode="edit"
query="empdata"
insert="Yes"
delete="Yes">

Populate a cfgrid control with data from the
empdata query. Selecting a grid cell enables you
to edit it. Rows can be inserted and deleted. The
grid is 300 X 250 pixels and has 10 pixels of
space above and below it.

<cfgridcolumn name="Emp_ID"
header="Emp ID"
width=50
headeralign="center"
headerbold="Yes"
select="No">

Create a 50-pixel wide column for the data in the
Emp_ID column of the data source. Center a
header named Emp ID and make it bold.

Do not allow users to select fields in this column
for editing. Since this field is the table’s primary
key, users should not be able to change it for
existing records and the DBMS should generate
this field as an automincrement value.

<cfgridcolumn name="LastName"
header="Last Name"
width=100
headeralign="center"
headerbold="Yes">

Create a 100-pixel wide column for the data in
the LastName column of the data source. Center
a header named Last Name and make it bold.

<cfgridcolumn name="Dept_ID"
header="Dept"
width=35
headeralign="center"
headerbold="Yes">

Create a 35-pixel wide column for the data in the
Dept_ID column of the data source. Center a
header named Dept and make it bold.

160 Chapter 9 Building Dynamic Forms
To update the data source with cfgridupdate

1 Open a new file in ColdFusion Studio.

2 Modify the file so that it appears as follows:

<cfgridupdate grid="Employee_grid"
datasource="CompanyInfo"
tablename="Employee">

3 Save the file as handle_grid.cfm.

4 View grid2.cfm in your browser, make changes to the grid, and then submit
them.

Reviewing the code

The following table describes the code and its function:

Updating the database with cfquery
You can use the cfquery tag to update your database from the cfgrid changes. This
provides you with full control over how the updates are made and allows you to
handle any errors that arise.

To update the data source with cfquery:

1 Open a new file in ColdFusion Studio.

2 Modify the file so that it appears as follows:

<html>
<head>

<title>Catch submitted grid values</title>
</head>
<body>

<h3>Grid values for Form.employee_grid row updates</h3>

<cfif isdefined("Form.employee_grid.rowstatus.action")>

<cfloop index = "Counter" from = "1" to =
#arraylen(Form.employee_grid.rowstatus.action)#>

<cfoutput>
The row action for #Counter# is:
#Form.employee_grid.rowstatus.action[Counter]#

Code Description

<cfgridupdate grid="Employee_grid" Update the database from the
Employee_grid grid.

datasource="CompanyInfo" Update the CompanyInfo data source.

tablename="Employee" Update the Employee table.

Creating an Updateable Grid 161

</cfoutput>

<cfif Form.employee_grid.rowstatus.action[counter] is "D">

<cfquery name="DeleteExistingEmployee"
datasource="CompanyInfo">
DELETE FROM Employee
WHERE

Emp_ID=#Form.employee_grid.original.Emp_ID
[Counter]#
</cfquery>

<cfelseif Form.employee_grid.rowstatus.action[counter] is "U">

<cfquery name="UpdateExistingEmployee"
datasource="CompanyInfo">
UPDATE Employee
SET

LastName=’#Form.employee_grid.LastName[Counter]#’,
Dept_ID=#Form.employee_grid.Dept_ID[Counter]#

WHERE
Emp_ID=#Form.employee_grid.original.Emp_ID

[Counter]#
</cfquery>

<cfelseif Form.employee_grid.rowstatus.action[counter] is "I">

<cfquery name="InsertNewEmployee"
datasource="CompanyInfo">
INSERT into Employee

(LastName, Dept_ID)
VALUES (’#Form.employee_grid.LastName[Counter]#’,

#Form.employee_grid.Dept_ID[Counter]#)
</cfquery>

</cfif>
</cfloop>

</cfif>

</body>
</html>

3 Rename your existing handle_grid.cfm file if you wish to save it, then save this file
as handle_grid.cfm.

4 View grid2.cfm in your browser, make changes to the grid, and then submit
them.

162 Chapter 9 Building Dynamic Forms
Reviewing the code

The following table describes the code and its function:

Code Description

<cfif isdefined
("Form.employee_grid.rowstatus.action")>
<cfloop index = "Counter" from = "1" to =
#arraylen(Form.employee_grid.rowstatus.action)#>

If there is an array of edit types, then the
table needs changing. Otherwise, do
nothing. Loop through the remaining code
once for each row to be changed. Counter
is the common index into the arrays of
change information for the row being
changed.

<cfoutput>
The row action for #Counter# is:
#Form.employee_grid.rowstatus.action[Counter]#

</cfoutput>

Display the action code for this row:
U, I, or D.

<cfif Form.employee_grid.rowstatus.action[counter]
is "D">

<cfquery name="DeleteExistingEmployee"
datasource="CompanyInfo">
DELETE FROM Employee
WHERE

Emp_ID=#Form.employee_grid.original
.Emp_ID[Counter]#

</cfquery>

If the action is to delete a row, generate a
SQL DELETE query specifying the
Emp_ID (the primary key) of the row to be
deleted.

<cfelseif Form.employee_grid.rowstatus.action
[counter] is "U">

<cfquery name="UpdateExistingEmployee"
datasource="CompanyInfo">
UPDATE Employee
SET LastName=

’#Form.employee_grid.LastName[Counter]#’,
Dept_ID=
#Form.employee_grid.Dept_ID[Counter]#

WHERE
Emp_ID=#Form.employee_grid.original.

Emp_ID[Counter]#
</cfquery>

Otherwise, if the action is to update a row,
generate a SQL UPDATE query to update
the LastName and Dept_ID fields for the
row specified by the Emp_ID primary table
key.

Creating an Updateable Grid 163
<cfelseif
Form.employee_grid.rowstatus.action[counter] is
"I">

<cfquery name="InsertNewEmployee"
datasource="CompanyInfo">
INSERT into Employee
(LastName, Dept_ID)

VALUES
(’#Form.employee_grid.LastName[Counter]#’,
#Form.employee_grid.Dept_ID[Counter]#)

</cfquery>

Otherwise, if the action is to insert a row,
generate a SQL INSERT query to insert
the Employee’s last name and department
ID from the grid row into the database. The
Insert operation assumes that the DBMS
automatically increments the Emp_ID
primary key. If you use the Dbase version
of the CompanyInfo database that is
provided for UNIX installations, the record
is inserted without an Emp_ID number.

</cfif>
</cfloop>

</cfif>

Close the cfif tag used to select among
deleting, updating, and inserting.
Close the loop used for each row to be
changed.
Close the cfif tag that surrounds all the
active code.

Code Description

164 Chapter 9 Building Dynamic Forms
Building Slider Bar Controls
You can use the cfslider control to create a slider control and define a wide range of
formatting options for slider label text, label font name, size, boldface, italics, and
color, as well as slider scale increments, range, positioning, tick marks, and behavior.
Slider bars are useful because they are highly visual and users cannot enter invalid
values.

To create a slider control:

1 Create a new file in ColdFusion Studio.

2 Modify the file so that it appears a follows:

<cfform name="Form1" action="submit.cfm"
method="Post">

<cfslider name="myslider"
bgcolor="cyan"
bold="Yes"
range="0,1000"
scale="100"
value="600"
fontsize="14"
label="Slider %value%"
height="60"
tickmarkmajor="True"
width="400">

</cfform>

3 Save the file as slider.cfm and view it in your browser.

To get the value of the slider in the action page, use the variable Form.slider_name;
in this case, Form.myslider.

Building Text Entry Boxes 165
Building Text Entry Boxes
The cftextinput tag is similar to the HTML input=text tag. With cftextinput,
however, you can also specify font and alignment options, as well as enable input
validation methods using either a JavaScript or the validate attribute.

The following example shows a basic cftextinput control. This example validates a
date entry, which means that a user must enter a valid date in the form mm/dd/yy
(the year can be up to four digits). For a complete list of validation formats, see the
CFML Reference.

Please enter a date:

<cfform name="Form1"

action="submit.cfm"
method="Post">

<cftextinput name="entertext"
value="mm/dd/yy"
maxlength="10"
validate="date"
font="Trebuchet MS">

<input type="Submit"

value="Submit">

</cfform>

To get the value of the input text in the action page, use the variable
Form.textinput_name; in this case, Form.entertext.

166 Chapter 9 Building Dynamic Forms
Building Drop-Down List Boxes
The drop-down list box that you can create with cfselect is similar to the HTML
select tag. However, cfselect gives you more control over user inputs, provides
error handling, and, most importantly, allows you to automatically populate the
selection list from a query.

When you populate a cfselect with data from a query, you only need to specify the
name of the query that is supplying data for the cfselect and the query column
name for each list element that you want to display.

To populate a drop-down list box with query data using cfselect:

1 Open a new file in ColdFusion Studio.

2 Modify the file so that it appears as follows:

<cfquery name="getNames"
datasource="CompanyInfo">
SELECT * FROM Employee

</cfquery>

<cfform name="Form1" action="submit.cfm"
method="Post">

<cfselect name="employees"
query="getNames"
value="Emp_ID"
display="FirstName"
required="Yes"
multiple="Yes"
size="8">

</cfselect>

<input type="Submit"
value="Submit">

</cfform>

3 Save the file as selectbox.cfm and view it in your browser.

Note that because the tag includes the multiple attribute, the user can select
multiple entries in the list box. Also, because the value tag specifies Emp_ID, the
primary key for the Employee table, Employee IDs (not first names) get passed in the
Form.Employee variable to the application page specified in the cfform action
attribute.

Embedding Java Applets 167
Embedding Java Applets
The cfapplet tag allows you to embed Java applets in a cfform. To use cfapplet,
you must first register your Java applet using the ColdFusion Administrator Java
Applets page (under Extensions on the Server tab). In the Administrator, you define
the interface to the applet, encapsulating it so that each invocation of the cfapplet
tag is very simple.

The cfapplet tag offers several advantages over using the HTML applet tag:

• Return values Since cfapplet requires a form field name attribute, you can
avoid coding additional JavaScript to capture the applet’s return values. You can
reference return values like any other ColdFusion form variable:
Form.variablename.

• Ease of use Since the applet’s interface is defined in the Administrator, each
instance of the cfapplet tag in your pages only needs to reference the applet
name and specify a form variable name.

• Parameter defaults ColdFusion uses the parameter value pairs you defined in
the Administrator. You can override these values by specifying parameter value
pairs in cfapplet.

When an applet is registered, you enter just the applet source and the form variable
name:

<cfapplet appletsource="Calculator"
name="calc_value">

By contrast, with the HTML applet tag, you must declare all the applet’s parameters
every time you want to use it in a ColdFusion page.

Registering a Java applet
Before you can use a Java applet in your ColdFusion pages, you must register the
applet in the Administrator.

To register a Java applet:

1 Open the ColdFusion Administrator by clicking on the Administrator icon in the
ColdFusion Program group and entering the Administrator password (if
required).

2 Click Java Applets on Administrator Server tab to open the Java Applets page.

3 Click the Register New Applet button to open the Add/Registered Java Applet
page.

4 Enter a name for the applet that you want to register. Enter the information your
applet requires, and choose the height, width, vertical and horizontal space, and
alignment that you want. Enter the Parameter names and their default values.

5 Click Create to complete the process.

168 Chapter 9 Building Dynamic Forms
Applet registration fields

The following table explains the applet registration fields:

Field Description

Codebase Enter the base URL of the applet: the directory that
contains the applet components. The applet class files
must be located within the Web browser root directory.
Example:
http://servername/classes

Code This is the name of the file that contains the compiled
applet. The filename is relative to the code base URL.
The *.class file extension is not required.

Method Enter the name of a method in the applet that returns a
string value. If you specify the method name in the
cfapplet tag name attribute, the value returned by the
method is available in the form’s action page as
Form.name. If the applet has no method, leave this
field blank.

Height Enter a measurement in pixels for the vertical space
for the applet.

Width Enter a measurement in pixels for the horizontal space
for the applet.

Vspace Enter a measurement in pixels for the space above
and below the applet.

Hspace Enter a measurement in pixels for the space on each
side of the applet.

Align Choose the alignment that you want.

Java Not Supported Message This message is displayed by browsers that do not
support Java applets. If you want to override this
message, you specify a different message in the
cfapplet notsupported attribute.

Parameter Name Enter a name for a required applet parameter. Your
Java applet typically provides the parameter name
needed to use the applet. Enter each parameter in a
separate parameter field.

Value For every parameter you enter, define a default value.
Your applet documentation provides guidelines on
valid entries.

Embedding Java Applets 169
Using cfapplet to embed an applet
After you register an applet, you can use the cfapplet tag to place the applet in a
ColdFusion page. The cfapplet tag has two required attributes: appletsource and
name. Since you registered the applet, and you defined each applet parameter with a
default value, you can invoke the applet with a very simple form of the cfapplet tag:

<cfapplet appletSource="appletname" name="form_variable">

Overriding alignment and positioning values

To override any of the values defined in the Administrator for the applet, you can use
the optional cfapplet parameters to specify custom values. For example, the
following cfapplet tag specifies custom spacing and alignment values:

<cfapplet appletSource="myapplet"
name="applet1_var"
height=400
width=200
vspace=125
hspace=125
align="left">

Overriding parameter values

You can also override the values that you assigned to applet parameters in the
Administrator by providing new values for any parameter. In order to override a
parameter, you must have already defined the parameter and a default value for it in
the ColdFusion Administrator Applets page.

<cfapplet appletSource="myapplet"
name="applet1_var"
Param1="registered parameter1"
Param2="registered parameter2">

Handling form variables from an applet
The cfapplet tag requires you to specify a form variable name for the applet. This
variable, referenced like other ColdFusion form variables, Form.variable_name
holds the value the applet method returns when it is executed in the cfform.

Not all Java applets return values. For instance, many graphical widgets do not
return a specific value; they do their flipping, spinning, fading, exploding, and that is
all. For this kind of applet, the method field in the Administrator remains empty.
Other applets, however, do have a method that returns a value. You can only use one
method for each applet that you register. If an applet includes more than one
method that you want to access, you can register the applet with a unique name for
each additional method you want to use.

170 Chapter 9 Building Dynamic Forms
To reference a Java applet return value in your application page:

1 Specify the name of the method in the Add/Registered Java Applet page of the
ColdFusion Administrator.

2 Specify the method name in the name attribute of the cfapplet tag when you
code your cfform.

When your page executes the applet, a form variable is created with the name that
you specified. If you do not specify a method, no form variable is created.

Chapter 10

Reusing Code
This chapter describes how to reuse common code with cfinclude, and create
custom CFML tags that encapsulate common code.

Contents

• Ways to Reuse Code .. 172

• Reusing Common Code with cfinclude... 172

• Using Custom Tags.. 173

• Nesting Custom Tags... 180

• Passing Data Between Nested Custom Tags.. 181

• Executing Custom Tags... 185

• Installing Custom Tags.. 187

• Managing Custom Tags... 188

172 Chapter 10 Reusing Code
Ways to Reuse Code
ColdFusion provides several different ways to reuse code. These ways include the
following techniques:

• If you are using ColdFusion Studio, you can write code snippets, which you can
copy into pages.

• You use the cfinclude tag to include a ColdFusion page in another page.
Included pages behave just as though you typed the included code directly into
the calling page.

• You can create custom CFML tags. Unlike included pages, these custom tags act
as other tags do. You pass parameters to the custom tags from the calling page
and the custom tag pages have their own local Variables scope.

The following sections describe these techniques in more detail.

Reusing Common Code with cfinclude
Often, you use some of the same elements in multiple pages; for example,
navigation, headers, and footer code.

Instead of copying and maintaining the same code from page to page, ColdFusion
allows you to store the code in one page and then refer to it in many pages. This way,
you can modify one file; the changes appear throughout an entire application.

Use the cfinclude tag to automatically include an existing file in the current page.
The page that calls the included page is sometimes referred to as the calling page.
Each time the calling page is requested, the included page’s file contents are added
in that page for processing.

For cfinclude syntax, see the CFML Reference.

To reference code in a calling page:

1 Create a file header.fm that displays your company’s logo. Your page could
consist of just the following lines or it could include many lines to define an
entire header.

(Of course, for this code to work you must also put your company’s logo as a gif
file in the same directory as header.cfm.)

2 Open the file askemp.cfm in ColdFusion Studio.

3 Include header.cfm in this page by adding the following line just below the
<body> tag:

<cfinclude template="header.cfm">

4 Save the page.

5 Open getemp.cfm in ColdFusion Studio.

Using Custom Tags 173
6 Include the header.cfm file in this page:

<cfinclude template="header.cfm">

7 View askemp.cfm in a browser, then submit the form so that you display
getemp.cfm.

The header should appear on both pages.

Note
The file header.cfm must be in the same directory where you saved askemp.cfm and
getemp.cfm (or a subdirectory). If it is not, make sure it is in a directory that has a
mapping defined in ColdFusion Administrator, or move it to the appropriate
directory.

Using Custom Tags
Custom tags wrap functionality in a page that can be called from a ColdFusion
application page. ColdFusion custom tags built in CFML allow for rapid application
development and code reuse while offering off-the-shelf solutions to many
programming chores.

You use a custom tag just as you would use a standard HTML or ColdFusion tag, for
example, you might call a custom tag to generate a happy birthday message as
follows:

<CF_HappyBirthday name="Ted Cantor" birthDate="December, 5, 1987">

A custom tag can also have a body and end tag, for example:

<CF_HappyBirthdayMessge name="Ellen Janes" birthDate="June, 8, 1993">
<P> Happy Birthday Ellen!</P>
<P> May you have many more!</P>
</CF_HappyBirthdayMessage>

You call custom tags by adding the cf_ prefix to the filename (without the .cfm
suffix). For example, use the tag name cf_getweather to call the file getweather.cfm.
You must store custom tags that you call directly in either the same directory as the
calling page, in the CFUSION\CustomTags directory, or in a subdirectory of the
CFUSION\CustomTags directory. Each file defines a single custom tag.

You can also use the cfmodule tag to call custom tags. The cfmodule tag lets you
specify the location of the custom tag file. The cfmodule tag is useful if you are
concerned about possible name conflicts when invoking a custom tag or if the
application must use a variable to dynamically call a custom tag at runtime. For
more information on using the cfmodule tag, see theCFML Reference.

174 Chapter 10 Reusing Code
Using existing custom tags
Before creating a custom tag in CFML, you should review the Custom Tag section of
the ColdFusion Developer Exchange. Tags are grouped in several broad categories
and are downloadable as freeware, shareware, or commercial software. You can
quickly view each tag’s syntax and usage information. The Gallery contains a wealth
of background information on custom tags and an online discussion forum for tag
topics.

Tag names with the cf_ preface are CFML custom tags; those with the cfx_ preface
are ColdFusion Extensions written in C++. For more information about the CFX tags,
see Chapter 21, “Building Custom CFXAPI Tags” on page 389.

If you do not find a tag that meets your specific needs, you can create your own
custom tags in CFML.

Creating custom CFML tags
Creating a custom tag in CFML is no different from writing any CFML page. You can
use all CFML constructs, as well as HTML. You are free to use any naming
convention that fits your development practice. Unique descriptive names make it
easy for you and others to find the right tag.

Note
While tag names in ColdFusion pages are case-insensitive, custom tag filenames
must be lowercase on UNIX.

Variable scopes and special variables
ColdFusion provides several variable scope types and built-in variables that help you
pass information between calling pages and custom tag pages.

• Use the Attributes scope in the custom tag page to refer to the attributes passed
by the calling page. For example, assume the calling page has the following line:

cf_mytag Firstname="Thadeus" Lastname="Jones">

In this case, the mytag.cfm custom tag page refers to the passed attributes as
Attributes.Firstname and Attributes.Lastname.

• Use the Caller scope in the custom tag page to refer to local variables in the
calling tag page. You use the Caller scope to return values to the calling page, but
you can also use this scope to access any local variables on the calling page.

• Use the Request scope for variables in nested tags. The Request scope is available
to the base page, all pages it includes, all custom tag pages it calls, and all custom
tag pages called by the included pages and custom tag pages. Collaborating
custom tags that are not nested in a single tag can exchange data via the request
structure. The Request scope is represented as a structure named Request.

Using Custom Tags 175
Custom tag pages also have access to system data structure called thisTag. The
thisTag structure contains information about the tag and its execution
environment. The thisTag variable is described in “Executing Custom Tags,” on
page 185.

Using tag attributes
Custom tag attribute values are passed from the calling page to the custom tag page
as name-value pairs.

CFML custom tags support required and optional attributes. Attributes are defined
as name-value pairs. Custom tag attributes conform to CFML coding standards:

• ColdFusion passes any attributes in the Attributes scope.

• Use the cfparam tag with a default attribute at the top of a custom tag to test for
and assign defaults for optional attributes that are passed from a calling page.

• Use the cfparam tag without a default attribute or a cfif tag with an IsDefined
function at the top of a custom tag to test for required attributes that must be
passed from a calling page.

• Use the Attributes.attribute_name syntax when referring to passed attributes
to distinguish them from custom tag page local variables.

• Attributes are case-insensitive.

• Attributes can be listed in any order within a tag.

• Attribute = value pairs for a tag must be separated by a space.

• Passed values that contain spaces must be enclosed in double-quotes.

176 Chapter 10 Reusing Code
Passing values to and from custom tags
Because custom tags are individual ColdFusion pages, variables and other data are
not automatically shared between a custom tag and the calling page.

To pass data from the calling page to the custom tag, specify attribute name-value
pairs in the custom tag, just as you do for normal HTML and CFML tags. In the
custom tag you use the Attributes scope to access these variables.For example, to
pass the value of the NameYouEntered variable to the cf_getMD tag, you can call the
custom tag as follows:

<cf_getMD Name="#NameYouEntered#">

In the getmd.cfm file, you refer to the passed attribute as Attributes.Name.

To pass values back to the calling page, use the Caller scope. The custom tag page
can also access variables already set on the calling by simply prefixing the calling
page’s local variable name with Caller. For example, use the following code to set the
variable Doctor on the calling page:

<cfset Caller.Doctor="Doctor " & Attributes.Name>

The following figure shows the relation between the variables on the calling page and
the custom tag:

Using Custom Tags 177
Passing custom tag attributes via CFML structures
You can use the reserved attribute attributecollection to pass attributes to
custom tags. Attributecollection must reference a structure that contains the
attribute names as the keys and the attribute values as the values. You can freely mix
attributecollection with other attributes when you call a custom tag.

The key-value pairs in the structure specified by attributecollection get copied
into the called page Attributes scope. This has the same effect as specifying the
attributecollection entries as individual attributes when you call the custom tag.
The custom tag page refers to the attributes passed using attributecollection the
same way as it does other attributes; for example as Attributes.CustomerName or
Attributes.Department_number.

If the called custom tag uses a cfassociate tag to save its attributes in the base tag,
the attributes passed via structure are saved as independent attribute values, with no
indication that they were aggregated into a structure by the custom tag’s caller.

Custom tag processing reserves attributecollection to refer to the structure
holding a collection of custom tag attributes. If attributecollection does not refer
to such a collection, the ColdFusion generates a Template exception.

The following example uses an attributecollection to pass two of four attributes:

<cfset zort=StructNew()>
<cfset zort.x = "-X-">
<cfset zort.y = "-Y-">
<cf_testtwo a="blab" attributecollection=#zort# foo="16">

If testtwo.cfm contains this CFML:

---custom tag ---

<cfoutput>#attributes.a# #attributes.x# #attributes.y#

#attributes.foo#</cfoutput>

--- end custom tag ---

its output is the following statement:

---custom tag ---
blab -X- 12 16
--- end custom tag ---

178 Chapter 10 Reusing Code
Custom tag example
In this example, we create a custom tag that uses an attribute that is passed to it to
set the value of a variable called Doctor on the calling page.

To create a custom tag:

1 Create a new application page (the calling page) in ColdFusion Studio.

2 Modify the file so that it appears as follows:

<html>
<head>

<title>Enter Name</title>
</head>
<body>
<!--- Enter a name, which could also be done in a form --->
<!--- This example simply uses a cfset --->
<cfset NameYouEntered="Smith">

<!--- Display the current name --->
<cfoutput>
Before you leave this page, you’re #NameYouEntered#.

</cfoutput>

<!--- go to the custom tag --->
<CF_GetMD Name="#NameYouEntered#">
<!--- Come back from the Custom tag --->

<!--- display the results of the custom tag --->
<cfoutput>
You are now #Variables.Doctor#.

</cfoutput>
</body>
</html>

3 Save the page as callingpage.cfm.

4 Create another new page (the custom tag) in ColdFusion Studio.

5 Enter the following code:

<!--- The value of the variable Attributes.Name comes from the
calling page.
 If the calling page does not set it, make it “Who”. --->

<cfparam name="Attributes.Name" default="Who">

<!--- Create a variable called Doctor, make its value "Doctor "
 followed by the value of the variable Attributes.Name.
 Make its scope Caller so it is passed back to the calling page

--->
<cfset Caller.Doctor="Doctor " & Attributes.Name>

6 Save the page as getmd.cfm.

7 Open the file callingpage.cfm in your browser.

The calling page uses the getmd custom tag and displays the results.

Using Custom Tags 179
Reviewing the code

The following table describes the code and its function:

Tip
Be careful not to overwrite variables that might already exist on the calling page. You
should adopt a naming convention to minimize the chance of overwriting variables.
For example, prefix the returned variable with customtagname_, with
customtagname being the name of the custom tag.

Note
Data pertaining to the HTTP request or to the current application is visible in the
custom tag page. This includes the variables in the Form, Url, Cgi, Request, Cookies,
Server, Application, Session, and Client scopes.

Code Description

<cfset NameYouEntered="Smith"> In the calling page, create a variable
NameYouEntered and assign it the value
"Smith."

<cfoutput>
Before you leave this page,
you’re

#NameYouEntered#.

</cfoutput>

In the calling page, display the value of the
NameYouEntered variable before calling
the custom tag.

<CF_GetMD
Name="#NameYouEntered#">

In the calling page, call the GetMD custom
tag and pass it the Name attribute whose
value is the value of the local variable
NameYouEntered.

<cfparam name="Attributes.Name"
default="Who">

The custom tag page normally gets the
Name variable in the Attributes scope from
the calling page. Assign it the value "Who"
if the calling page did not pass an attribute.

<cfset Caller.Doctor="Doctor " &
Attributes.Name>

In the custom tag page, create a variable
called Doctor in the Caller scope so it will
exist in the calling page as a local variable.
Set its value to the concatenation of the
string “Doctor “ and the value of the
Atributes.Name variable.

<cfoutput>
You are now
#Variables.Doctor#.

</cfoutput>

In the calling page, display the value of the
Doctor variable returned by the custom tag
page. (We use the Variables scope prefix
to emphasize the fact that the variable is
returned as a local variable.)

180 Chapter 10 Reusing Code
Nesting Custom Tags
A custom tag can call other custom tags, thereby nesting tags. ColdFusion uses
nested tags such as cfgraph and cfgraphdata, cfhttp and cfhttppam, and cftree
and cftreeitem. The ability to nest tags allows you to provide similar functionality.

The calling tag is known as an ancestor, parent, or base tag, while the tags that
ancestor tags call are known as descendant, child, or sub tags. Together, the ancestor
and all descendent tags are called collaborating tags.

The following table lists the terms that describe the relationships between nested
tags:

In order to nest tags, the parent tag must have a closing tag.

You can create multiple levels of nested tags. In this case, the sub tag becomes the
base tag for its own sub tags. Any tag with an end tag present can be an ancestor to
another tag.

Nested custom tags operate through three modes of processing, which are exposed
to the base tags through the variable thisTag.ExecutionMode:

• The start mode, in which the base tag is processed for the first time.

• The inactive mode, in which sub tags and other code contained within the base
tag are processed. No processing occurs in the base tag during this phase.

• The end mode, in which the base tag is processed a second time. The end mode
occurs when ColdFusion reaches the custom tag’s end tag.

Associating sub tags with the base tag

While the ability to create nested custom tags is a tremendous productivity gain,
keeping track of complex nested tag hierarchies can become a chore. The
cfassociate tag lets the parent know what the children are up to. By adding this tag
to a sub tag, you enable communication of its attributes to the base tag.

Calling tag
Tag nested within
the calling tag Description

ancestor descendant An ancestor is any tag that contains other tags
between its start and end tags. A descendant is
any tag called by a tag.

parent child Parent and child are synonyms for ancestor
and descendant.

base tag sub tag A base tag is an ancestor that you explicitly
associate with a descendant, called a sub tag,
with cfassociate.

Passing Data Between Nested Custom Tags 181
Passing Data Between Nested Custom Tags
A key custom tag feature is the ability of collaborating custom tags to exchange
complex data without user intervention while encapsulating each tag’s
implementation so that others cannot see it.

When you decide to you use nested tags, you must address the following issues:

• What data should be accessible?

• Which tags can communicate to which tags?

• How are the source and targets of the data exchange identified?

• What CFML mechanism is used for the data exchange?

What data is accessible?
To enable developers to obtain maximum productivity in an environment with few
restrictions, CFML custom tags can expose all their data to collaborating tags.

When you develop custom tags, you should document all variables that
collaborating tags can access and/or modify. When your custom tags collaborate
with other custom tags, you should make sure that they do not modify any
undocumented data.

To preserve encapsulation, put all tag data access and modification operations into
custom tags. For example, rather than simply documenting that the variable
MyQueryResults in a tag’s implementation holds an important query result set and
expecting users of the custom tag to manipulate MyQueryResults directly, create
another nested custom tag that manipulates MyQueryResult. This protects the users
of the custom tag from changes in the tag’s implementation.

Where is data accessible?
Two custom tags can be related in a variety of ways in a page. Ancestor and
descendant relationships are important because they relate to the order of tag
nesting.

A tag’s descendants are inactive while the page is executed, that is, the descendent
tags have no instance data. A tag, therefore, can only access data from its ancestors,
not its descendents. Ancestor data is be available from the current page and from the
whole runtime tag context stack. The tag context stack is the path from the current
tag element up the hierarchy of nested tags, including those in included pages and
custom tag references, to the start of the base page for the request. Both cfinclude
tags and custom tags appear on the tag context stack.

High-level data exchange
There are many cases in which descendant tags are used only as a means for data
validation and exchange with an ancestor tag, such as cfhttp/cfhttpparam and
cftree/cftreeitem. You can use the cfassociate tag to encapsulate this
processing.

182 Chapter 10 Reusing Code
The cfassociate tag has the following format:

<cfassociate baseTag="tagName" dataCollection="collectionName"

The baseTag attribute is the name of the base tag that gets access to this tag’s
attributes. The dataCollection attribute is the name of the structure in which the
base tag stores the sub-tag data. Its default value is AssocAttribs. You only need to
specify a dataCollection attribute if the base tag can have more than one type of
sub tag. It is convenient for keeping separate collections of attributes, one per tag
type.

When cfassociate is encountered in a sub tag, the sub tag’s attributes are
automatically saved in the base tag. The attributes are in a structure appended to the
end of an array whose name is 'thisTag.collectionName'.

The cfassociate tag performs the following operations:

<!--- Get base tag instance data --->
<cfset data = getBaseTagData(baseTag).thisTag>
<!--- Create a string with the attribute collection name --->
<cfset collection_Name = "data.#dataCollection#">
<!--- Create the attribute collection, if necessary --->
<cfif not isDefined(collectionName)>
<cfset #collection_Name# = arrayNew(1)>
</cfif>
<!--- Append the current attributes to the array --->
<cfset temp=arrayAppend(evaluate(collectionName), attributes)>

The CFML code accessing sub-tag attributes in the base tag could look like the
following:
<!--- Protect against no sub-tags --->

<cfparam Name=’thisTag.assocAttribs’ default=#arrayNew(1)#>

<!--- Loop over the attribute sets of all sub tags --->
<cfloop index=i from=1
to=#arrayLen(thisTag.assocAttribs)#>

<!--- Get the attributes structure --->
<cfset subAttribs = thisTag.assocAttribs[i]>
<!--- Perform other operations --->

</CFLOOP>

Ancestor data access

The ancestor’s data is represented by a structure object that contains all the
ancestor’s data.

The following functions provide access to ancestral data:

• GetBaseTagList() Returns a comma-delimited list of uppercase ancestor tag
names. An empty string is returned if this is a top-level tag. The first element of a
non-empty list is the parent tag.

• GetBaseTagData(TagName, InstanceNumber=1) Returns an object that contains
all the variables (not just the local variables) of the nth ancestor with a given

Passing Data Between Nested Custom Tags 183
name. By default, the closest ancestor is returned. If there is no ancestor by the
given name or if the ancestor does not expose any data (such as CFIF), an
exception is thrown.

Example: Ancestor data access

This example creates two custom tags and a simple page that calls each of the
custom tags. The first custom tag calls the second. The second tag reports on its
status and provides information about its ancestors.

To create the calling page:

1 Create a new application page (the calling page) in ColdFusion Studio.

2 Modify the file so that it appears as follows:

Call cf_nestag1 which calls cf_nestag2

<cf_nestag1>
<hr>

Call cf_nestag2 directly

<cf_nestag2>
<hr>

Using a loop to call call cf_nestag2

<cfloop index=i from=1 to=2>
<cf_nestag2>
</cfloop>

3 Save the page as nesttest.cfm.

To create the first custom tag page:

1 Create a new application page (the calling page) in ColdFusion Studio.

2 Put the following single line in the file:

<cf_nestag2>

3 Save the page as nestag1.cfm.

To create the second custom tag page:

1 Create a new application page (the calling page) in ColdFusion Studio.

2 Modify the file so that it appears as follows:

<cfif thisTag.executionmode is ’start’>
<!--- Get the tag context stack. The list will look something like
"CFIF,MYTAGNAME..." --->
<cfset ancestorlist = getbasetaglist()>

<!--- Output your own name. You are the second entry because
the first entry in the context stack is the cfif tag at
the top of this file --->

<cfoutput>
<p>I’m custom tag #ListGetAt(ancestorlist,2)#</p>

184 Chapter 10 Reusing Code
<!--- output all the contents of the stack a line at a time --->
<cfloop index="loopcount" from="1" to=#listlen(ancestorlist)#>
Ancestorlist entry #loopcount# n is

#ListGetAt(ancestorlist,loopcount)#

</cfloop>

</cfoutput>

<!--- Determine whether you’re nested inside a loop --->
<cfset inloop = listfindnocase(ancestorlist,’cfloop’)>
<cfif inloop neq 0>

I’m running in the context of a CFLOOP tag.<p>
</cfif>

<!--- Determine whether you are nested inside
a custom tag. Skip the first two elements of the
ancestor list, i.e., CFIF and the name of the
custom tag I’m in --->
<cfset incustomtag = ’’>
<cfloop index=elem

list=#listrest(listrest(ancestorlist))#>
<cfif (left(elem, 3) eq ’cf_’)>

<cfset incustomtag = elem>
<cfbreak>

</cfif>
</cfloop>

<cfif incustomtag neq ’’>
<!--- Say you are there --->
<cfoutput>

I’m running in the context of a custom
tag named #inCustomTag#.<p>

</cfoutput>

<!--- Get the tag instance data --->
<cfset tagdata = getbasetagdata(incustomtag)>

<!--- Find out the tag’s execution mode --->
I’m located inside the
<cfif tagdata.thisTag.executionmode neq ’inactive’>

custom tag code either because it is in
its start or end execution mode.

<cfelse>
body of the tag

</cfif>
<p>

<cfelse>
<!--- Say you are lonely --->
I’m not nested inside any custom tags. :^(<p>

</cfif>
</cfif>

3 Save the page as nestag2.cfm.

4 Open the file nesttest.cfm in your browser.

Executing Custom Tags 185
Executing Custom Tags
The following sections provide information on executing custom tags.

Tag instance data
When a custom tag page executes, ColdFusion keeps data related to the tag instance.
The thisTag built in structured variable preserves this data with a unique identifier.
The behavior is similar to the File tag-specific variable (sometimes called the File
scope).

The following variables are generated by the thisTag structure:

Modes of execution
ColdFusion invokes a custom tag page in either of two modes:

• Start tag execution

• End tag execution

If an end tag is not explicitly provided and shorthand empty element syntax
(<TagName …/>) is not used, the custom tag page gets invoked only once, in start tag
mode. If a tag must have an end tag provided, use thisTag.HasEndTag during start
tag execution to validate this.

The same CFML page is executed for both the start and end tag of a custom tag.

Specifying execution modes
A variable with the reserved name thisTag.ExecutionMode will specify the mode of
invocation of a custom tag page. The variable has one of the following values:

• Start start tag execution

• End end tag execution

When the body of the custom tag (not the custom tag page or template) executes, the
value of the ExecutionMode variable is inactive.

Variable Description

ExecutionMode Valid values are "start" and "end."

HasEndTag Used for code validation. It distinguishes between custom tags
that are called with and without end tags.

GeneratedContent The content that has been generated by the tag. This includes
anything in the body of the tag, including the results of any active
content, such as ColdFusion variables and functions. You can
process this content as a variable.

AssocAttribs Holds the attributes of all nested tags if you use cfassociate to
make them available to the parent tags.

186 Chapter 10 Reusing Code
A custom tag page that performs processing in both modes can have the following
format:

<cfif thisTag.ExecutionMode is ’start’>
<!--- Start tag processing --->
<cfelse>
<!--- End tag processing --->
</CFIF>

You can also use cfswitch:

<cfswitch expression=#thisTag.ExecutionMode#>
<cfcase value= ’start’>
<!--- Start tag processing --->
</cfcase>
<cfcase value=’end’>
<!--- End tag processing --->
</cfcase>
</cfswitch>

Terminating tag execution
The cfexit tag terminates execution of a custom tag. The cfexit tag’s method
attribute specifies where execution continues. cfexit can specify that processing
continues from the first child of the tag or continues immediately after the end tag
marker.

You can also use the method attribute to specify that the tag body executes again.
This enables custom tags to act as high-level iterators, emulating cfloop behavior.

The following table summarizes cfexit behavior:

method attribute value Location of cfexit call Behavior

ExitTag (default) Base page Acts like cfabort

ExecutionMode=start Continue after end tag

ExecutionMode=end Continue after end tag

ExitTemplate Base page Acts like cfabort

ExecutionMode=start Continue from first child in
body

ExecutionMode=end Continue after end tag

Loop Base page Error

ExecutionMode=start Error

ExecutionMode=end Continue from first child in
body

Installing Custom Tags 187
Access to generated content
Custom tags can access and modify the generated content of any of its instances
using the thisTag.GeneratedContent variable. In this context, the term generated
content means the results of processing the body of a given tag. This includes all text
and HTML code in the body, the results of evaluating ColdFusion variables,
expressions, and functions, and the results generated by descendant tags. Any
changes to the value of this variable results in changes to the generated content.

thisTag.GeneratedContent is always empty during the processing of a start tag. Any
output generated during start tag processing is not considered part of the tag’s
generated content.

As an example, consider a tag that comments out the HTML generated by its
descendants. Its implementation could look something like this:

<cfif thisTag.ExecutionMode is ’end’>
<cfset thisTag.GeneratedContent =
’<!--#thisTag.GeneratedContent#-->’>
</cfif>

Installing Custom Tags
Custom tags are just like other cfm files except that they must be installed in a
specific location to be accessible from the calling page. Because ColdFusion loads
the first instance it finds of the custom tag called by a page, you should avoid placing
copies of a custom tag in different locations.

Local tags
The ColdFusion engine first searches for a custom tag in the directory of the calling
page. This allows you to keep a custom tag file in the same directory as the page that
uses it.

Shared tags
To share a custom tag among applications in multiple directories, place it in the
Custom Tags folder under your ColdFusion installation directory, for example
C:\CFUSION\CustomTags. You can create subfolders to organize custom tags.
ColdFusion searches recursively for the Custom Tags directory, stepping down
through any existing subdirectories until the custom tag is found.

188 Chapter 10 Reusing Code
Managing Custom Tags
If you deploy custom tags in a multideveloper environment or distribute your tags
publicly, you can use additional ColdFusion capabilities:

• An advanced invocation syntax to resolve possible name conflicts

• Advanced security

• Template encoding

Resolving filename conflicts
To avoid errors caused by duplicate custom tag filenames, use the cfmodule tag in
the calling page. You must use either a template or name attribute in the tag, but you
cannot use both The following table lists the basic cfmodule attributes:

Securing custom tags
ColdFusion’s security framework enables you to selectively restrict access to
individual tags or to tag directories. This can be an important safeguard in team
development.

To avoid name conflicts, you can register custom tags as a security resource on the
ColdFusion Administrator Advanced Security page. For details, see Advanced
ColdFusion Administration.

Attribute Description

template Required if the name attribute is not used. Specifies a relative path
to the cfm file. Same as template attribute in cfinclude. Note that
the directory must have a mapping defined in ColdFusion
Administrator.
Example: <cfmodule template="../MyTag.cfm"> identifies a
custom tag file in the parent directory.

name Required if template attribute is not used. Use period-separated
names to uniquely identify a subdirectory under the Custom Tags
root directory.

Example: <cfmodule name="MyApp.GetUserOptions"> identifies
the file GetUserOptions.cfm in the Custom Tags\MyApp directory
under the ColdFusion root directory.

attributes The custom tag’s attributes.

Managing Custom Tags 189
Encoding custom tags
You can use the command-line utility cfencode to encode any ColdFusion
application page. By default, the utility is installed in the /cfusion/bin directory. It is
especially useful for securing custom tag code before distributing it.

The cfencode tag uses the following syntax:

cfencode infile outfile [/r /q] [/h "message"] /v"2"

The following table describes the options:

Note
While it is possible to encode binary files with cfencode, it is not recommended.

Option Description

input file Name of the file you want to encode. cfencode does not process an
encoded file.

output file Path and filename of the output file.

Warning: If you do not specify an output filename, a warning message
asks if you want to continue, in which case the encoded file will
overwrite the source file.

/r Recursive, when used with wildcards, recurses through subdirectories
to encode files.

/q Suppresses warning messages.

/h Header, allows custom header to be written to the top of the encoded
file(s).

/v Required parameter that allows encoding using a specified version
number. Use "1" for pages you want to be able to run on ColdFusion
3.x. Use "2" for pages you want to run strictly on ColdFusion 4.0 and
later.

190 Chapter 10 Reusing Code

Chapter 11

Preventing and Handling
Errors
ColdFusion includes many tools and techniques for ensuring that your code works
properly. These tools include sophisticated debugging and code validation tools,
error logging tools, and error handling mechanisms. This chapter describes these
tools and presents approaches to troubleshooting common problems.

ColdFusion Studio also provides interfaces for debugging application pages and for
dynamically validating multiple levels of HTML and CFML code. This chapter does
not discuss debugging in ColdFusion Studio.

Contents

• Debug Settings in the ColdFusion Administrator... 192

• CFML Code Validation.. 194

• Troubleshooting Common Problems .. 195

• Error Handling in ColdFusion.. 197

• Generating Custom Error Messages with cferror ... 199

• Logging Errors ... 202

• Handling Exceptions in ColdFusion .. 204

192 Chapter 11 Preventing and Handling Errors
Debug Settings in the ColdFusion Administrator
ColdFusion can provide important debugging information for every application
page requested by a browser. When you enable debugging, the output displays in a
block following normal page output.

For detailed information on the debugging and logging settings in the ColdFusion
Administrator, see Advanced ColdFusion Administration.

Note
By default, when you enable any of the debugging and logging options, debug output
becomes visible to all users. To restrict debug output to specific IP addresses, use the
Debugging IPs page of the ColdFusion Administrator to specify the addresses that
can receive debugging messages.

Generating debug information for an individual page
You can view the parameters and CGI environment variables for an individual
application page without turning on the global debug settings in the ColdFusion
Administrator. Simply append the parameter mode=debug to the end of the URL:

www.myserver.com/cfdocs/test.cfm?mode=debug

Note
If you do not restrict access to debugging information, any browser can use this
parameter to get debugging information. To restrict access to specific IP addresses,
use the Debugging IPs page of the ColdFusion Administrator to specify the addresses
that can receive debugging messages.

Generating debug information for an individual query
You can view debug information for an individual query by putting the debug
attribute into the opening cfquery tag:

<cfquery name="TestQuery" datasource="CompanyInfo" debug>
SELECT * FROM TestTable
</cfquery>

When this query runs, it places the debug information into the output page where
the query is placed.

Error messages
If ColdFusion is unable to fulfill a request because of an error, it displays a diagnostic
message in the user’s browser. The message includes a link that allows the user to
e-mail a report of the error to the site administrator. You enable the mail link feature
in the Mail Logging page of the ColdFusion Administrator. Errors are written to a log
file for later review.

Debug Settings in the ColdFusion Administrator 193
ColdFusion returns the following information:

• Database errors, including the ODBC error code, the extended error message
returned from the ODBC driver, the name of the data source, and the SQL
statement submitted to the database

• Syntax error, including the line of the application page file on which the error
occurred

• System-related errors, such as out of memory conditions, or file or disk access
errors

You must select the Display the template path in error messages option on the
ColdFusion Administrator Debug Options page to include the path of the page that
encounters the problem in each error message.

Tip
If you get a message that does not explicitly identify the cause of the error, check on
key system parameters such as available memory and disk space.

For information on using the Logging settings and Mail Logging settings, see
Advanced ColdFusion Administration

194 Chapter 11 Preventing and Handling Errors
CFML Code Validation
ColdFusion provides two methods of validating your CFML code:

• Runtime validation

• The CFML Syntax Checker

Runtime validation
The ColdFusion Application Server features two modes of attribute checking for
processing application pages: strict and relaxed. Macromedia recommends that you
always use the strictest possible level of CFML validation.

To enable strict validation:

1 Open the ColdFusion Administrator Server Settings page.

2 Select the Enable Strict Attribute Validation check box.

The code validator inspects all code and validates most attributes before execution
begins, when the CFML is converted into executable pseudocode. However, tags
with a switch attribute, such as action or method, for which the value is provided at
runtime, are validated during execution. Validation of such attributes causes a slight
performance penalty.

Although dynamically providing an action can save a few lines of code, you should
avoid this practice in the interest of a more complete validation and faster
application performance.

Tip
If a commercially purchased custom tag fails to run, try turning off the Enforce Strict
Attribute Validation setting in the ColdFusion Administrator. If the tag continues to
generate errors, you should contact the tag’s vendor.

The CFML syntax checker
You can run the CFML syntax checker to validate your pages. It scans your pages and
returns a list of pages that do not pass the syntax check, with error messages
indicating the cause of each failure. The CFML Syntax checker application page is:

webroot/cfdocs/cfmlsyntaxcheck/cfmlsyntaxcheck.cfm.

Note
The CFML syntax checker cannot detect an invalid attribute combination for
attributes whose values are provided at runtime because it does not execute the
CFML page it checks.

Troubleshooting Common Problems 195
Troubleshooting Common Problems
The following section describes a few common problems that you might encounter
and ways to resolve them.

ODBC data source configuration
Problem: ODBC driver manager cannot make a connection to the database.

Connection errors include problems with the location of files, network connections,
and database client library configuration.

Verify that you can connect to the database by clicking the Verify button on the
ODBC Data Sources page of the ColdFusion Administrator. If you are unable to make
a simple connection from that page, you might need to consult your database
administrator to help solve the problem.

Problem: Data source does not exist or name is incorrectly specified.

Create data sources before you refer to them in your application source files. Also,
check the spelling of the data source name.

HTTP/URL
Problem: ColdFusion cannot correctly decode the contents of your form
submission.

The method attribute in forms sent to the ColdFusion Server must be Post, for
example:

<form action="test.cfm" method="Post">

Problem: The browser complains when you include spaces in URLs.

URLs cannot have embedded spaces. Use a plus sign (+) wherever you want to
include a space. ColdFusion correctly translates the + sign into a space.

A common scenario in which this error occurs is when you dynamically generate
your URL from database text fields that have embedded spaces. To avoid this
problem, include only numeric values in the dynamically generated portion of URLs.

Or, you can use the URLEncodedFormat function, which automatically replaces
spaces with + signs.

CFML syntax errors
Problem: You get an error message you do not understand.

Make sure all your CFML tags have matching end tags where appropriate. It is a
common error to omit the end tag for the cfquery, cfoutput, cftable, or cfif tag.

When developing pages in ColdFusion Studio, use the Tag Completion feature,
which adds an closing tag each time you create an opening tag.

196 Chapter 11 Preventing and Handling Errors
Problem: Invalid attribute or value.

If you use an invalid attribute or attribute values, ColdFusion returns an error
message. To prevent such syntax errors, use the ColdFusion syntax validation tools
in ColdFusion Studio.

Problem: Mismatched quotes and escape characters.

Check strings in attributes and expressions for proper placement of single and
double quotes. Color coding in ColdFusion Studio can help you spot improper quote
placement.

Problem: You suspect that there are problems with the structure or contents of a
complex data variable, such as a structure, array, query object, or WDDX-encoded
variable.

Use the cfdump tag to generate a table-formatted display of the variable’s structure
and contents. For example, to dump a structure named relatives, use the following
line. Note that you must surround the variable name with pound signs.

<cfdump var=#relatives#>

Error Handling in ColdFusion 197
Error Handling in ColdFusion
By default, ColdFusion generates its own error messages when it encounters errors.
In addition, it provides a variety of tools and techniques for you to customize error
information and handle errors when they occur, including the following techniques:

• You can specify custom pages for ColdFusion to display when a ColdFusion page
is missing or if it encounters an exception error during the processing of a page
(the Site-wide Error Handling page). You specify these pages on the ColdFusion
Administrator Server Settings page.

• You can use the cferror tag to specify ColdFusion pages to handle specific types
of errors.

• You can use the cftry, cfcatch, and cfthrow tags to catch and handle exception
errors directly.

The remaining sections in this chapter provide the following information:

• The basic building blocks for understating types of ColdFusion errors and how
ColdFusion handles them

• How to use the cferror tag to specify error-handling pages

• Logging errors

• How to handle ColdFusion exceptions

Understanding ColdFusion errors
Before you can effectively managee ColdFusion errors, you must understand the
error types and how ColdFusion handles them.

ColdFusion error types

ColdFusion errors can help you to debug your application and provide feedback to
users. There are several types of errors in ColdFusion:

• Missing template These errors occur if ColdFusion Server gets a request for a
page that it cannot find.

• Validation These errors occur when a user violates the server-side form field
validation rules in a form being submitted. You specify server-side form
validation by using hidden form fields. Data validation errors should not be
confused with code validation.

• Exception Exceptions are events that disrupt an application’s normal flow of
instructions. There are three general types of exceptions:

− Error responses from external services, such as an ODBC driver or CORBA
server

− CFML errors or the results of cfthrow or cfabort tags

− Internal errors in the ColdFusion Server

198 Chapter 11 Preventing and Handling Errors
How ColdFusion handles errors

The following pseudo-code program illustrates how ColdFusion handles errors. The
rest of this expands on this outline:

Case missing template error
ColdFusion displays either a standard error page or an error page

that you specify as the Missing Template Handler in the
Administrator
Server Settings Missing Template Handler field.

Case validation error
If cferror in application.cfm specifies a validation error handler

Use error page specified by cferror
Else

Use standard CFML validation error message format
Endif

Case exception error
If a cferror tag in aplication.cfm specifies a monitor error handler

for the exception type
Use the Monitor error page; when the page exits continue handling

the error as follows
Endif
If code with error is inside a cftry tag and the exception type is

 specified in a cfcatch tag (see Note)
Execute code in cfcatch tag

Else If a cferror tag specifies an exception error handler for the
exception type

Use error page specified by cferror
Else If Administrator Settings Site-wide Error Handler field

specifies an error handler page
Use custom error page

Else If a cferror tag specifies an request error handler
Use error page specified by cferror

Else
Use standard CFML error message
Endif

Note
If the current tag is nested inside other tags, the CFML processor checks the entire
stack of open tags until it finds a suitable cftry/cfcatch combination or reaches the
end of the stack.

Generating Custom Error Messages with cferror 199
Generating Custom Error Messages with cferror
By default, ColdFusion uses a standard page for most errors. Custom error pages
allow you to control the error information that users see. You can specify custom
error pages for different types of errors and handle different types of errors in
different ways. For example, you can create specific pages to handle errors that could
be recoverable, such as request timeouts. You can also make your error messages
consistent with the look and feel of your application.

You can specify the following types of custom error pages:

You set the custom error application pages with the cferror tag. You can set the
custom error application pages page-by-page, but because custom error pages
generally apply to an entire application, it is more efficient to include the cferror
tag in the Application.cfm file. After you create a custom error page, you must
include the cferror tag in your application’s Application.cfm page. For more
information, see “Understanding the Web Application Framework” on page 214.

For detailed information on the cferror tag, see the CFML Reference.

Type Description

Validation Handles server-side form field data validation errors. The validation
error page cannot include CFML tags, but can display special error
page variables.

Exception Handles exception errors. You can specify different error pages for
different types of exceptions.

Request Handles any exception that is not otherwise handled. The request error
page runs after the CFML language processor finishes. As a result, the
request error page cannot include CFML tags, but can display error
page variables. A request error page is useful as a backup if errors
occur in other error handlers.

Monitor Handles exceptions before any other error-handling mechanism runs.
You can specify different monitor pages for different types of
exceptions.

When the monitor page completes, error handling continues with any
cftry/cfcatch code or other cferror error handlers for the error
type.
You should only use monitor handlers for debugging, for example, to
log error information, and not include them in production code.

200 Chapter 11 Preventing and Handling Errors
Creating an error application page
Error application pages for validation and request errors cannot use ColdFusion
tags; they can only use HTML tags. Error application pages for exception and
monitor errors can use all of CFML, including tags, expressions, and functions.

Even validation and request error pages have access to specific CFML error variables
such as Error.Diagnostics (for request errors) and Error.InvalidFields (for validation
errors). All CFML error variables start with the prefix Error. To include these variables
in your HTML, surround the variable names with pound signs, but do not use the
cfoutput tag; for example:

<p>
ColdFusion found the following errors in the data you entered:
</p>
#error.InvalidFields#

Error page variables

The following variables are available on error pages:

Error type Error variable Description

Exception
Request

Monitor

error.type The exception type. For a list of error
types, see “Types of recoverable
exceptions supported” on page 205.

error.diagnostics Detailed error diagnostics from
ColdFusion Server.

error.mailTo E-mail address of administrator who
should be notified (corresponds to the
value set in the mailTo attribute of
cferror).

error.dateTime Date and time when the error
occurred.

error.browser Browser that was running when the
error occurred.

error.generatedContent The failed request’s generated
content.

error.remoteAddress IP address of the remote client.

error.HTTPReferer Page from which the client accessed
the link to the page where the error
occurred.

error.template Page being executed when the error
occurred.

error.queryString URL query string of the client's
request.

Generating Custom Error Messages with cferror 201
Example of a request error page

The following example shows a custom error page for a request error:

<html>
<head>

<title>Products - Error</title>
</head>
<body>

<cfoutput>
<h2>Sorry</h2>

<p>An error occurred when you requested this page.
Please email the Webmaster to report this error.
We will work to correct the problem and apologize
for the inconvenience.</p>

<table border=1>
<tr><td>Error Information

Date and time: #error.DateTime#

Page: #error.template#

Remote Address: #error.remoteAddress#

HTTP Referer: #error.HTTPReferer#

Diagnostics:

#error.diagnostics#

</td></tr></table>

</cfoutput>
</body>
</html>

Validation error.validationHeader Text for header of default validation
message.

error.invalidFields Unordered list of validation errors that
occurred. This includes any text that
you specify in the value attribute or a
hidden tag used to validate form input.

error.validationFooter Text for footer of default validation
message.

Error type Error variable Description

202 Chapter 11 Preventing and Handling Errors
Example of a validation error page

The following example shows a custom error page for a validation error:

<html>
<head>

<title>Products - Error</title>
</head>
<body>

<h2>Oops</h2>

<p>You failed to correctly complete all the fields
in the form. The following problems occurred:</p>

#error.invalidFields#

</body>
</html>

Logging Errors
ColdFusion Server provides extensive capabilities for generating, managing, and
viewing log files, as described in Advanced ColdFusion Administration.

ColdFusion automatically logs errors to the default logs in the following cases:

• If you use the default error handlers

• If a cferror handler of type Request handles the error

Otherwise you must use the cflog tag in your error handling code to generate log
entries.

The cflog tag lets you specify the following information:

• A custom file or standard ColdFusion log file in which to write the message.

• Text to write to the log file.

• Message severity (type): Information Warning, Fatal, or Error.

• Whether to log any of the following: application name, thread ID, system date, or
system time. By default, all get logged.

For example, you could use a cflog tag in an exception error page to log the error
information to an application-specific log file.

<html>
<head>

<title>Products - Error</title>
</head>
<body>

<h2>Sorry</h2>

<p>An error occurred when you requested this page.
The error has been logged and we will work to correct the problem.

Logging Errors 203
We apologize for the inconvenience. </p>

<cflog file="myapp_errors"
text="Exception error --

Exception type: #error.type#
Template: #error.template#,
Remote Address: #error.remoteAddress#,
HTTP Rerference: #error.HTTPReferer#
Diagnositcs: #error.diagnostics#"

type="Error">

</body>
</html>

Reviewing the code

The following table describes the highlighted code and its function:

Code Description

<cflog file=”myapp_errors”
text=”Exception error
 Exception type: #error.type#
 Template: #Error.Template#,
 Remote Address:

#Error.RemoteAddress#,
 Diagnositcs: #Error.Diagnostics#”
type=”Error”>

When this page is processed, log an
error message to the file
myapp_errors.log file in the
ColdFusion log directory containing
the thread ID, date and time,
application, and an error message
that includes the exception type, the
path of the page that caused the
error, the remote address that called
the page, and the error’s diagnostic
message.

204 Chapter 11 Preventing and Handling Errors
Handling Exceptions in ColdFusion
Ordinarily, when ColdFusion encounters an error, it stops processing and displays
an error message or error page (as specified by the cferror tag). However, you can
use ColdFusion’s exception handling tags to catch and process exceptions in
ColdFusion pages. Exceptions include any event that disrupts the normal flow of
instructions in a ColdFusion page, such as failed database operations, missing
include files, or developer-specified events.

In order for your code to handle an exception, the tags in question must appear
within a cftry block. It is a good idea to enclose an entire application page in a cftry
block. You then follow the cftry block with cfcatch blocks, which respond to
potential errors. When an exception occurs within the cftry block, processing is
thrown to the cfcatch block for that type of exception.

Note
For cases when the error handler is not able to successfully handle the thrown error,
use the cfrethrow tag within a cfcatch block.

Here is an outline for using cftry and cfcatch to handle errors:

<cftry>
... Put your page’s application code here ...
<cfcatch type="exception type1">
... Add exception processing code here ...
</cfcatch>
<cfcatch type="exception type2">
... Add exception processing code here ...
</cfcatch>
<cfcatch type="Any">
... Add exception processing code appropriate for all other
exceptions here ...
</cfcatch>
</cftry>

To catch errors in a single problematic SQL statement, for example, you might
narrow the focus by surrounding the ColdFusion tag that contains the SQL
statement with a cftry block and following it with a cfcatch type="Database" tag
that displays the information in the cfcatch.SQLState variable.

Note
Do not attempt to enclose an entire application in a cftry block by putting the cftry
tag in Application.cfm because you cannot be sure that there always will be a
matching cftry end tag.

For information on the cftry, cfcatch, cfrethrow, and cfthrow tags, see the CFML
Reference.

Handling Exceptions in ColdFusion 205
Types of recoverable exceptions supported
ColdFusion Server supports several types of recoverable exceptions. Use the type
attribute in the cfcatch tag to determine which type of exception to catch. You can
also use these types as the values of the exception attribute in cferror
type=exception tags.

You can specify the following basic exception types. For a list of advanced exception
types, see the CFML Reference.

Specifying the type as any causes the ColdFusion Application Server to catch internal
exceptions, memory allocation errors, and access violations, which you might not be
prepared to handle.

Type Tag(s) Notes

Database failures cfcatch type="Database" Catch failed database operations, such as
failed SQL statements, ODBC problems,
and so on.

Template errors cfcatch type="Template" Catch general application page errors.
The cfinclude, cfmodule, and cferror
tags can generate a template exception.

Missing included file
errors

cfcatch type="missingInclude" Catch errors where included files are
missing.

Object exceptions cfcatch type="Object" Catch exceptions in ColdFusion code that
works with objects.

Security exceptions cfcatch type="Security" Raise catchable exceptions in ColdFusion
code that works with security.

Expression exceptions cfcatch type="Expression" Catch exceptions when an expression fails
evaluation.

Locking exceptions cfcatch type="Lock" Catch failed locking operations, such as
when a cflock critical section times out or
fails at runtime.

Application-defined
exception events
raised by cfthrow

cfcatch type="Application"

a cfcatch block that has no
type attribute

Catch only those custom exceptions that
are specified as having the Application type
in the cfthrow tag that defines them.

Custom exceptions
raised by cfthrow

cfcatch
type="custom_exception_type"

Catch a custom a exception type raised by
cfthrow.

Unspecified
exceptions

cfcatch type="Any" Catch any exceptions that are not
specifically handled in another error
handler, including unexpected internal
errors.

206 Chapter 11 Preventing and Handling Errors
Applications can optionally use the cfthrow tag to raise custom exceptions. Such
exceptions are caught with any of the following type specifications:
• type="custom_exception_type"

• type="application"
• type="any"

The custom_exception_type type designates the name of a user-defined type
specified in the cfthrow tag.

An exception raised within a cfcatch block cannot be handled by the cftry block
that immediately encloses the cfcatch tag.

Exception information in cfcatch
Within a cfcatch block, the active exception’s properties can be accessed as
variables. The following variables are available in most cfcatch blocks:

Tag context information

On the Debugging Settings page in the ColdFusion Administrator you can select the
Enable CFML stack trace option. When you enable this option, cfcatch blocks make
available an array of structures called cfcatch.tagContext. Each structure represents
one level of the ColdFusion runtime’s active tag context at the time when the
ColdFusion interpreter detected the exception.

Property variable Description

cfcatch.type The exception’s type, returned as a string.

cfcatch.message The exception’s diagnostic message, if one was provided.
If no diagnostic message is available, this is an empty
string.

cfcatch.detail A detailed message from the CFML interpreter. This
message, which contains HTML formatting, can help to
determine which tag threw the exception.

cfcatch.extendedInfo A custom error message. This is returned only for cfcatch
tags where type="Application" or a custom type.

cfcatch.errorCode Any exception that is a part of the CFML exception
hierarchy supplies a value for this variable.

For type="Application", cfthrow tags can supply a
value for this code via the errorcode attribute. For
Type="Database", cfcatch.errorcode has the same
value as cfcatch.sqlstate. Otherwise, the value of
cfcatch.errorCode is the empty string.

cfcatch.tagContext Provides the name and position of each tag in the tag
stack and the full pathnames of the files that contain the
tags in the tag stack.

Handling Exceptions in ColdFusion 207
The structure at position 1 of the array represents the outermost tag in the stack of
tags that were executing when the interpreter detected the exception. The structure
at position ArrayLen(cfcatch.tagContext) represents the currently executing tag at
the time the interpreter detected the exception.

The tagContext structures have the following attributes:

• Template The pathname of the application page that contains the tag.

• Line and Column The tag’s line number and column number within the
application page.

Note
Clear the Enable CFML stack trace option to avoid having production servers expend
resources creating a traceback stack by default. When you turn off this setting,
cfcatch.tagContext is a zero-length array.

Database exceptions

The following additional variables are available whenever the exception type is
database:

Expression exceptions

The following variable is only available for expression exceptions:

Property variable Description

cfcatch.nativeErrorCode The native error code associated with this exception.
Database drivers typically provide error codes to assist
in the diagnosis of failing database operations. The
values assumed by cfcatch.NativeErrorCode are
driver-dependent.
If no error code is provided, the value of
nativeErrorCode is -1.

cfcatch.SQLState The SQLState code associated with this exception.
Database drivers typically provide error codes to assist
in the diagnosis of failing database operations. The
values assumed by cfcatch.SQLState are
driver-dependent.

If no SQLState value was provided, the value of
SQLState is -1.

Property variable Description

cfcatch.errnumber An internal expression error number, valid only when
type="Expression".

208 Chapter 11 Preventing and Handling Errors
Locking exceptions

The following additional information is available for exceptions related to cflock
sections:

Missing include exceptions

The following additional variable is available if the error is caused by a missing file
specified by a cfinclude tag:

Exception handling strategies
Use cftry with cfcatch to handle exceptions based on their point of origin within an
application page, or based on diagnostic information.

Use the cftry tag with one or more cfcatch blocks to define a ColdFusion block for
exception handling. When an application page raises an error condition, the
ColdFusion Server checks the stack of currently active blocks for a corresponding
cfcatch handler. In particularly problematic cases, you might enclose an
exception-prone tag in a specialized combination of cftry and cfcatch to
immediately isolate the tag’s exceptions, or to use cftry with cfcatch type="Any" at
a main processing level to gracefully terminate a subsystem’s processing in case of
an unexpected error.

Exception handling example
The following example shows cftry and cfcatch, using the CompanyInfo data
source used in many of the examples in this book and a sample included file,
includeme.cfm.

If an exception occurs during the cfquery statement’s execution, the application
page flow switches to the cfcatch type="Database" exception handler. It then
resumes with the next statement after the cftry block, once the cfcatch
type="Database" handler completes.

Similarly, the cfcatch type="MissingInclude" block handles exceptions raised by
the cfinclude tag. Any unknown, but possibly recoverable, exceptions are handled
by the cfcatch type="Any" block.

Property variable Description

cfcatch.lockName The name of the affected lock. This is set to
"anonymous" if the lock name is unknown.

cfcatch.lockOperation The operation that failed. This is set to "unknown" if the
failed operation is unknown.

Property variable Description

cfcatch.missingFileName The name of the missing file.

Handling Exceptions in ColdFusion 209
<!--- Wrap code you want to check in a cftry block --->
<cfset EmpID=3>
<cftry>

<cfquery name="test" datasource="CompanyInfo">
SELECT Dept_ID, FirstName, LastName
FROM Employee
WHERE Emp_ID=#EmpID#

</cfquery>

<html>
<head>

<title>Test cftry/cfcatch</title>
</head>

<body>
<hr>
<cfinclude template="includeme.cfm">
<cfoutput query="test">
<p>Department: #Dept_ID#

Last Name: #LastName#

First Name: #FirstName#</p>
</cfoutput>

<hr>

<!--- Use cfcatch to test for missing included files. --->
<!--- Print Message and Detail error messages. --->
<!--- Block executes only if a MissingInclude exception is thrown. --->

<cfcatch type="MissingInclude">
<h1>Missing Include File</h1>
<cfoutput>

Message: #cfcatch.Message#
Detail: #cfcatch.Detail#
File name: #cfcatch.MissingFilename#

</cfoutput>

</cfcatch>

<!--- Use cfcatch to test for database errors.--->
<!--- Print error messages. --->
<!--- Block executes only if a Database exception is thrown. --->

<cfcatch type="Database">
<h1>Database Error</h1>
<cfoutput>

Message: #cfcatch.Message#
Native error code: #cfcatch.NativeErrorCode#
SQLState: #cfcatch.SQLState#
Detail: #cfcatch.Detail#

</cfoutput>

210 Chapter 11 Preventing and Handling Errors
</cfcatch>

<!--- Use cfcatch with TYPE="Any" --->
<!--- to find unexpected exceptions. --->

<cfcatch type="Any">
<cfoutput>

<h1>Other Error: #cfcatch.Type#</h1>

Message: #cfcatch.message#
Detail: #cfcatch.Detail#

</cfoutput>

</cfcatch>
</cftry>

</body>
</html>

To test the code:

1 Make sure there is no includeme.cfm file and display the page. The cfcatch
type="MissingInclude" block displays the error.

2 Create a non-empty includeme.cfm file and display the page. If your database is
configured properly you should see an employee entry and not get any error.

3 In the cfquery tag change the line:

FROM Employee

to:

FROM Employer

Display the page. This time the cfcatch type="Database" block displays an
error message.

4 Correct Employer back to Employee. Change the cfoutput line:

<p>Department: #Dept_ID#

to:

<p>Department: #DepartmentID#

Display the page. This time the cfcatch type="Any" block displays an error
message indicating an expression error.

Custom Exception Types
The type attribute allows a cfthrow tag to throw an exception of a specific type,
which can be caught by a cfcatch tag that has a matching type attribute.

A cfthrow tag without a type attribute will throw a type="Application" exception.

Handling Exceptions in ColdFusion 211
Naming conventions

A naming convention for custom exception types follows a convention that is similar
to Java class naming conventions: domain name in reverse order, followed by project
identifiers, as in this example:

<cfthrow
type="Invalid_field.codeValue"
errorcode="Dodge14B">

The predefined exception types, except for type="Application", are reserved; for
example, <cfthrow type="Database"> will be rejected.

A cfcatch tag can specify a custom type as well as one of the predefined types. For
example, to catch the exception thrown above, you use this syntax:

<cfcatch type="Invalid_field.codeValue">

ColdFusion uses the catch type as a pattern to find a catch handler. For example,

<cfthrow type="MyApp.BusinessRuleException.InvalidAccount">

would be handled by any of the following cfcatch error handlers.

<cfcatch type="MyApp.BusinessRuleException.InvalidAccount">
<cfcatch type="MyApp.BusinessRuleException">
<cfcatch type="MyApp">

The handler that matches most exactly handles the error. Therefore, in this case, the
MyApp.BusinessRuleException.InvalidAccount handler gets invoked. However, if
you used the following cfthrow tag:

<cfthrow type="MyApp.BusinessRuleException.InvalidVendorCode

the MyApp.BusinessRuleException handler receives the error.

The type comparison is case-insensitive. To match types exactly, rather than
performing pattern matching, use the cfsetting attribute
catchExceptionsByPattern="No".

212 Chapter 11 Preventing and Handling Errors

Chapter 12

Using the Application
Framework
The ColdFusion Web Application Framework is a powerful tool that you can use to
help structure your ColdFusion applications. This chapter describes how to create
and use the Application.cfm file, the application page that controls the application
framework.

Contents

• Understanding the Web Application Framework... 214

• Mapping an Application Framework... 216

• Creating the Application.cfm File .. 219

• Managing the Client State .. 221

• Configuring and Using Client Variables .. 223

• Using Session Variables .. 228

• Using Application Variables ... 230

• Using Server Variables .. 232

• Locking Code with cflock.. 233

• Examples of cflock... 238

214 Chapter 12 Using the Application Framework
Understanding the Web Application Framework
A ColdFusion application is a collection of application pages that work together.
Applications can be as simple as a guest book or as sophisticated as a full Internet
commerce system with catalog pages, shopping carts, and reporting. You can
combine individual applications to create advanced Web systems.

The ColdFusion Web Application Framework is based on four basic components:

• Application-level settings and functions

• Client, Session, Application, and Server scope variables

• Custom error handling

• Web server security integration

With these components, you can easily combine your ColdFusion application pages
to create sophisticated Web applications.

Application-level settings and functions
ColdFusion provides application-level facilities that help you control settings,
variables, and features available across the entire application. After you define an
application, you can use the application-level features in addition to all of the other
features in ColdFusion.

You specify application-level settings in the Application.cfm and OnRequestEnd.cfm
files. Application.cfm is executed when ColdFusion starts processing each page in
your application, and OnRequestEnd.cfm is processed after all other processing is
completed for the page.

Client, Session, Application, and Server scope variables
ColdFusion provides four variable scopes that let you to maintain data that must last
beyond the scope of the current page.

Variable Scope Description

Client Contains variables that are available for a single client browser
over multiple browser sessions in an application. Client variables
are stored as cookies, database entries, or Registry values. Client
variables can time out after an extended period.
You cannot access the Client scope as a data structure. You
should use the Client scope prefix in the variable name, but it is not
required.

Session Contains variables that are available for a single client browser for
a single browser session in an application. Session variables are
stored in memory and time out after a period of inactivity or when
the server shuts down.
You can access the Session scope as a data structure. You must
use the Session scope prefix in the variable name.

Understanding the Web Application Framework 215
ColdFusion does not attempt to automatically evaluate Application, Session, or
Server variables. You must use variable prefixes with these variables, as in
Session.variablename or Application.variablename. As a general rule you should
prefix all these variables with their scope identifier.

ColdFusion provides locking functions to manage access to Session, Application,
and Server variables. Because these variables are kept in your server’s memory, you
must lock them when you use them to prevent errors that arise from simultaneous
access.

Caution
Understanding lock management and using locks effectively is vital to correctly
using Session, Application, and Server scope variables. For more information on
locking, see “Locking Code with cflock” on page 233.

Custom error handling
You can use the cferror tag to display customized HTML pages when errors occur in
your application. This allows you to maintain a consistent look and feel within your
application even when errors occur. It also allows you to optionally suppress the
display of error information.

For more information, see “Generating Custom Error Messages with cferror” on page
199.

Web server security integration
You can integrate your applications with the user authentication and security
provided by your Web server. In addition, the ColdFusion Server offers a security
framework that controls access to applications, pages, data sources, and users. You
set the bounds of a security domain using the cfauthenticate tag.

For more information, see Chapter 19, “Application Security” on page 355.

Application Contains variables that are available to all pages in an application
for all clients. Application variables are stored in memory and time
out after a period of inactivity or when the server shuts down.
You can access the Application scope as a data structure. You
must use the Application scope prefix in the variable name.

Server Contains variables that are available to all applications in a server
and all clients. Server variables are stored in memory. They do not
time out, and are only deleted when the server stops running.
You cannot access the Server scope as a data structure. You must
use the Server scope prefix in the variable name.

Variable Scope Description

216 Chapter 12 Using the Application Framework
Mapping an Application Framework
An important step in designing a ColdFusion application is mapping its directory
structure.

Before you start building the application, establish a root directory for the
application. You can store application pages in subdirectories of the root directory.

Processing Application.cfm and OnRequestEnd.cfm
ColdFusion uses similar but different rules to locate and process Application.cfm
and OnRequestEnd.

Processing Application.cfm

When any ColdFusion application page is requested, ColdFusion searches up the
page’s directory tree for an Application.cfm file. When it is found, the
Application.cfm code is logically included at the beginning of that page.

If it is not found, ColdFusion searches up the directory tree until it finds an
Application.cfm file. If more than one Application.cfm file is in the current directory
tree, ColdFusion uses the first one it finds.

Only one Application.cfm file is ever processed for each ColdFusion application
page. The Application.cfm file is automatically included in each application page, as
if by a cfincludetag. If the Application.cfm page it is present in the directory tree,
there is no way not to include it. For this reason, it is the ideal location to set
application-level variables.

If an application page has a cfinclude tag pointing to an additional application
page, ColdFusion does not initiate another search for an Application.cfm page when
it includes the additional page.

If your application runs on a UNIX platform, which is case sensitive, you must spell
Application.cfm with an initial capital letter.

Processing OnRequestEnd.cfm

Just as the Application.cfm file is executed before each application page it governs,
you can specify a file named OnRequestEnd.cfm, which is executed after each
application page in the same application.

ColdFusion Server looks for the OnRequestEnd.cfm file in the same directory as the
Application.cfm file of the current application page. The OnRequestEnd.cfm file is
never executed if it resides in another directory.

The OnRequestEnd.cfm file is not executed if there is an error or an exception in the
called page, or if the called page executes the cfabortor cfexit tag.

Just as the Application.cfm file must be spelled with a capital A on UNIX systems, you
must spell the OnRequestEnd.cfm file with capital O, R, and E.

Mapping an Application Framework 217
Defining the directory structure
Defining a root directory for an application has a number of advantages:

• Development The application is easier to develop and maintain because the
application page files are well organized.

• Portability You can more easily move the application to another server or
another part of a server without changing any code in the application page files.

• Application-level settings Application pages that fall under the same root
directory can share application-level settings and functions.

• Security Application pages that fall under the same directory can share Web
server security settings.

You can use a single Application.cfm file for your application, or use different
Application.cfm files that govern individual sections of the application.

The following directory trees illustrate two approaches to implementing the
Application Framework:

• In the first example, a company named Web Wonders, Inc. uses a single
Application.cfm file installed in their application root directory to process all
application page requests.

• The example on the right shows how Bandwidth Associates uses the settings in
individual Application.cfm files to specify processing for ColdFusion applications
at the departmental level. Only the Products application pages are processed
using the settings in the root Application.cfm file. The Consulting, Marketing,
and Sales directories have their own Application.cfm file.

218 Chapter 12 Using the Application Framework
.

Creating the Application.cfm File 219
Creating the Application.cfm File
The special application-wide page called Application.cfm defines application-level
settings and functions such as:

• Application name

• Client state management options

• Application and Session variable management options

• Default variables

• Application-specific custom error pages

• Data sources

• Default style settings

• Exclusive locks

• Other application-level constants

Naming the application
In ColdFusion, you define an application by giving it a name using the
cfapplication tag. By using the same application name in a cfapplication tag, you
define a set of pages as part of the same logical application.

Note
The value you set for the name attribute in cfapplication is limited to 64 characters.

To name the application:

1 Open ColdFusion Studio and create a new file.

2 Modify the file so that it appears as follows:

<!--- This example illustrates cfapplication --->

<!--- Name the application --->
<cfapplication NAME="SearchApp">

3 Save the file as Application.cfm in the root directory of your application
framework.

Setting application default variables and constants
It is often useful to set default variables and application-level constants in the
Application.cfm file. For example, you can designate:

• A data source that you are using

• A domain name

• Style settings such as fonts or colors

• Other important application-level variables

220 Chapter 12 Using the Application Framework
Example: Application.cfm

The following example shows a complete Application.cfm file for the sample
Products application:

<!--- Set application name and enable Client variables, stored in
a data source called mycompany --->

<cfapplication name="Products"
clientmanagement="Yes"
clientstorage="mycompany"
sessionmanagement="Yes">

<!--- Set custom global error handling pages for this application--->
<cferror type="REQUEST"

template="requesterr.cfm"
mailto="admin@company.com">

<cferror type="VALIDATION"
template="validationerr.cfm">

<!--- Set application-specific constants. These are put in the
Variables scope of every page in the application--->

<cfset homepage="http://www.mycompany.com">
<cfset primarydatasource="CompanyDB">
<!--- set global error handling for this application --->

<!--- set Session variable for this application.--->
<!--- Note that the cfset tag is surrounded by a cflock tag --->
<cflock timeout="30"

scope="Session"
type="exclusive">

<cfset session.current_location = "Davis, Porter, Alewife">
</cflock>
<cfset mainpage = "default.cfm">
<cfset sm_location = "dpa">
<cfset current_page = "#cgi.path_info#?#cgi.query_string#">

Managing the Client State 221
Managing the Client State
Because the Web is a stateless system, each connection that a browser makes to a
Web server is unique to the Web server. However, within an application it is
important to be able to keep track of users as they move through the pages within the
application. This is the definition of client state management.

ColdFusion provides tools to maintain client state by seamlessly tracking variables
for a browser as the user moves from page to page within the application. These
variables can be used in place of other methods for tracking client state, such as
using URL parameters, hidden form fields, and HTTP cookies.

About Client and Session variables
ColdFusion provides you with two tools for managing the client state: Client
variables and Session variables. Both types of variables are tied to a specific client,
but they have significant differences in how they are managed and when they should
be used:

As a general rule, it is best to use Session variables for any values that need to exist for
only a single browser session. You should reserve Client variables for client-specific
data that you want available for multiple browser sessions, such as client
preferences.

Variable Type Description

Client Data saved as cookies, database entries, or Registry entries, but is
accessed more slowly than data stored in memory.
Each type of data storage has its own timeout period. You can
specify the database and Registry data timeouts in ColdFusion
Administrator. Cookie life depends on the user’s system.
Data is stored on a per-application basis. For example, if you store
Client variables as cookies, the user has a separate cookie for
each ColdFusion application provided by a server.

Client variables must be strings (or represented as strings). They
cannot be arrays or structures.

You do not need to lock code that uses Client variables.

Session Data is stored in memory so it is accessed quickly.
Data is lost when the client browser is inactive for a timeout period.
You specify the timeout in the ColdFusion Administrator and
Application.cfm.

Data is available to a single application only.
Session variables can be any ColdFusion Data type.
You can access the Session scope as a ColdFusion structure.

You must lock Session code that uses variables to prevent
simultaneous access, for example from different frames.

222 Chapter 12 Using the Application Framework
About client cookies
Both types of variables normally require ColdFusion to store two client identification
variables as cookies on the client’s system:

• CFID, a sequential client ID

• CFToken, a random-number client security token

These cookies uniquely identify the client to the ColdFusion Server, which also
maintains copies of the variables. You can configure your application so that it does
not use client cookies at all, but you must then pass these variables to all pages your
application calls.

Managing client state in a clustered environment
To maintain your application's client state in a clustered server environment, you
can store the server-side client identification variables in a common, back-end
repository that all Web servers in a multiserver clustered environment can access.
You enable use of a common repository by specifying the cfapplication
setdomaincookies attribute in your Application.cfm page.

This attribute specifies that the server-side copies of the CFID and CFToken
variables used to identify the client to ColdFusion are stored at the domain level (for
example, .macromedia.com). If CFID and CFToken combinations already exist on
each host in the cluster, ColdFusion migrates the host-level variables on each cluster
member to the single, common domain-level variable. Following the setting or
migration of host-level cookie variables to domain-level variables, ColdFusion
creates a new cookie variable (CFMagic) that tells ColdFusion that domain-level
cookies have been set.

Managing client state without cookies
You can use ColdFusion's client state management without cookies, however, this is
not recommended. If you choose to maintain client state without cookies, you must
ensure that every request carries the CFID and CFToken variables.

To maintain client state without cookies, set the setClientCookies attribute of the
cfapplication tag to No. Then, you must maintain client state by passing CFID and
CFToken between pages, either in hidden form fields or appended to URLs. You
accomplish this using the variable Client.URLToken or Session.URLToken. (The
values of these two variables are the same.)

Configuring and Using Client Variables 223
Configuring and Using Client Variables
To use Client variables effectively, you set up the Client variable options and use the
variables on your ColdFusion pages.

Setting up Client variable options
If you want to enable Client variables, you must do so on every page in an

application. Because the Application.cfm file is included in all of the application’s
pages, you enable client management in the cfapplication tag, at the beginning of
Application.cfm.

To enable client state management:

1 Open the file Application.cfm in ColdFusion Studio and modify it so that it
appears as follows:

<!--- This example illustrates cfapplication --->

<!--- Name the application and enable client management--->
<cfapplication NAME="SearchApp"
clientmanagement="Yes">

2 Save the file as Application.cfm in the root directory of your application
framework.

Choosing a Client variable storage method

After you enable client state management, you must determine where you want to
store Client variables. The system-wide default is to store Client variables in the
Registry. But you can choose to store them instead in a SQL database or in cookies.

The ColdFusion Administrator Server Client Variables page controls the default
Client variable location. You can override the default location by specifying a
clientstorage attribute in the cfapplication tag.

You can specify the following values in the clientStorage attribute:

• Registry(the default)

• Name of a data source configured in the ColdFusion Administrator
• Cookie

As a general rule, it is most efficient to store Client variables in a database.

Cookie storage

When you set clientstorage="Cookie" the cookie that ColdFusion creates has the
application’s name. Storing client data in a cookie is scalable to large numbers of
clients, but this storage mechanism has some limitations. Chief among them is that
if the client turns off cookies in the browser, Client variables do not work.

224 Chapter 12 Using the Application Framework
Consider these additional limitations before implementing cookie storage for Client
variables:

• Many browsers allow only 20 cookies from a particular host to be set. ColdFusion
uses two of these cookies for CFID and CFToken and also creates a cookie named
cfglobals to hold global data about the client, such as HitCount, TimeCreated,
and LastVisit. This limits you to 17 unique applications per host.

• Some browsers set a size limit of 4K bytes per cookie. ColdFusion encodes
nonalphanumeric data in cookies with a URL encoding scheme that expands at a
3-1 ratio, which means you should not store large amounts of data per client.
ColdFusion throws an error if you try to store more than 4000 encoded bytes of
data for a client.

Specifying Client variable storage in Application.cfm

The following example shows how to enable Client variable management using a
sample database called mydatasource.

To specify the Client variable storage method:

1 Open the file Application.cfm in ColdFusion Studio and modify it so that it
appears as follows:

<!--- This example illustrates cfapplication --->

<!--- Name the application and enable client management--->
<cfapplication NAME="SearchApp"
clientmanagement="Yes"
clientstorage="mydatasource">

2 Save the file as Application.cfm in the root directory of your application
framework.

Note
Client storage mechanisms are exclusive; when one storage type is in use, the values
set in other storage options are unavailable.

Using Client variables
When you enable Client variables for an application, you can use them to keep track
of long-term information that is associated with a particular client.

Creating a Client variable

To create a Client variable and set the value of the parameter, use the cfset or
cfparam tag; for example:

<cfset Client.FavoriteColor="Red">

After you set a Client variable in this manner, it is available for use within any page in
your application that is accessed by the client for whom the variable is set.

Configuring and Using Client Variables 225
The following example shows how to use the cfparam tag to check for the existence
of a client parameter and to set a default value if the parameter does not already
exist:

<cfparam name="Client.FavoriteColor" default="Red">

Accessing and changing Client variables

You use the same syntax to access a Client variable as other types of variables. You
can use Client variables anywhere other ColdFusion variables are used.

To display the favorite color that has been set for a specific user, use the following
code:

<cfoutput>
Your favorite color is #Client.FavoriteColor#.

</cfoutput>

Standard Client variables

The Client scope has six built-in, read-only variables that your application can use:

You can use the Client.HitCount and time information variables in customizing
behavior, depending on how often users visit your site and when they last visited. For
example, the following code shows the date of a user’s last visit to your site:

<cfoutput>
Welcome back to the Web SuperShop. Your last
visit was on #DateFormat(Client.LastVisit)#.

</cfoutput>

Variable Description

Client.CFID The client ID, normally stored on the client system as a
cookie.

Client.CFToken The client security token, normally stored on the client system
as a cookie.

Client.URLToken A combination of the CFID and CFToken in the form
CFID=IDNum&CFTOKEN=tokenNum. This variable is useful if the
client does not support cookies and you must pass the CFID
and CFToken variables from page to page.

Client.HitCount The number of page requests made by the client.

Client.LastVisit The last time the client visited the application.

Client.TimeCreated The time the CFID and CFToken variables that identify the
client to ColdFusion were first created.

226 Chapter 12 Using the Application Framework
Getting a list of Client variables

To obtain a list of the custom client parameters associated with a particular client,
use the GetClientVariablesList function.

<cfoutput>#GetClientVariablesList()#</cfoutput>

The GetClientVariablesList function returns a comma-separated list of the names
of the Client variables for the current application. The standard system-provided
Client variables (CFID, CFToken, URLToken, HitCount, TimeCreated, and LastVisit)
are not returned in the list.

Deleting Client variables

Unlike normal variables, Client variables and their values are not stored in volatile
memory and persist over time. To delete a Client variable, use the
DeleteClientVariable function; for example:

<cfset IsDeleteSuccessful=DeleteClientVariable("MyClientVariable")>

The DeleteClientVariable function deletes only Client variables for the application
specified by cfapplication, if any. For more information on this function, see the
CFML Reference.

Also, using the Client Variables page of the ColdFusion Administrator Server tab, you
can edit the Client variable storage to remove Client variables stored in either the
Registry or a database after a set number of days. (The default value is 90 days when
Client variables are stored in the registry, 10 days when stored in a data source.)

For more information about setting timeout values, see Advanced ColdFusion
Administration.

Note
You cannot delete the system-provided Client variables (CFID, CFToken, URLToken,
HitCount, TimeCreated, and LastVisit).

Using Client variables with cflocation

If you use the cflocation tag to redirect to a path that ends in .dbm or .cfm, the
Client.URLToken is automatically appended to the URL. You can suppress this
behavior by adding the attribute addtoken="No" to the cflocation tag.

Client variable caching

All Client variable reads and writes are cached to help decrease the overhead of client
state management operations. For information on variables and server clustering,
see Advanced ColdFusion Administration.

Configuring and Using Client Variables 227
Exporting the Client variable database

If your Client variable database is stored in the Windows system registry and you
need to move it to another machine, you can export the registry key that stores your
Client variables and take it to your new server. The system tegistry allows you to
export and import Registry entries.

To export your Client variable database from the registry in Windows:

1 Open the Registry editor.

2 Find and select the following key:

HKEY_LOCAL_MACHINE\SOFTWARE\Allaire\ColdFusion\
CurrentVersion\Clients

3 On the Registry menu, click Export Registry File.

4 Enter a name for the registry file.

After you create a registry file, you can copy it to a new machine and import it by
selecting Import Registry File on the Registry Editor Registry menu.

On UNIX systems, the registry entries are kept in /opt/coldfusion/registry/
cf.registry, a text file that you can copy and edit directly.

228 Chapter 12 Using the Application Framework
Using Session Variables
Use Session variables when you need the variables for a single site visit or set of
requests. For example, you might use Session variables to store a user’s selections in
a shopping cart application. (Use Client variables when you need the variable for
future visits.)

Caution
You must use the cflock tag to prevent multiple requests from accessing any Session
variable simultaneously. Failure to do so can result in data corruption.

Enabling Session variables
You enable Session variables in the cfapplication tag in your Application.cfm file.
To enable Session variables:

• Set sessionManagement="Yes"

• Use the name attribute to specify the application’s name.

• Optionally, use the sessionTimeout attribute to set an application-specific
session timeout value. Use the CreateTimeSpan function to specify the number
of days, hours, minutes, and seconds for the timeout.

The following code is an example of turning on session management:

<!--- Name the application, and turn on Session management
with a 45-minute timeout --->

<cfapplication name="GetLeadApp"
sessionmanagement="Yes"
sessiontimeout=#CreateTimeSpan(0,0,45,0)#>

What is a session?
A session refers to all the connections that a single client might make to a server in
the course of viewing any pages associated with a given application. Sessions are
specific to individual users. As a result, every user has a separate session and has
access to a separate set of Session variables.

This logical view of a session begins with the first connection by a client and ends
(after a specified timeout period) after that client’s last connection. However,
because of the stateless nature of the Web, it is not always possible to define a precise
point at which a session ends. In the real world, a session ends when the user finishes
using an application. In most cases, however, a Web application has no way of
knowing if a user is finished or just lingering over a page.

You can impose some structure on Session variable duration by specifying a timeout
period. If the user does not access a page of the application within this timeout
period, ColdFusion interprets this as the end of the session and clears any variables
associated with that session.

Using Session Variables 229
The default timeout for Session variables is set to 20 minutes. You can change the
timeout on the Memory Variables page of the ColdFusion Administrator Server tab.
For more information, see Advanced ColdFusion Administration.

You can also set the timeout period for Session variables inside a specific application
(thereby overruling the Administrator default setting) by using the cfapplication
tag sessionTimeout attribute.

Storing session data in Session variables
Session variables are designed to store session-level data. They are a convenient
place to store information that all pages of your application might need during a user
session. Using Session variables, an application can initialize itself with user-specific
data the first time a user accesses one of the application’s pages. This information
can remain available while that user continues to use that application. For example,
you can retrieve information about a specific user’s preferences from a database
once, the first time a user accesses any page of an application. This information
remains available throughout that user’s session, thereby avoiding the overhead of
retrieving the preferences again and again.

Like Client variables, Session variables require a client name (client ID) and are
always scoped within that client ID. Session variables also work within the scope of
an application name if one is supplied, in which case their scope is the combination
of the client ID and the application name.

Standard Session variables
The Session Client scope has four built-in, read-only variables that your application
can use:

If you are also using Client variables, the Session.CFID, Session.CFToken, and
Session.URL token are identical to the corresponding Client variables.

Variable Description

Session.CFID The client ID, normally stored on the client system as a
cookie.

Session.CFToken The client security token, normally stored on the client system
as a cookie.

Session.URLToken A combination of the CFID and CFToken in the form
CFID=IDNum&CFTOKEN=tokenNum. Use this variable if the client
does not support cookies and you must pass the CFID and
CFToken variables from page to page.

Session.SessionID A unique identifier for the session. You use this variable in
cflock tags to identify the scope of the lock.

230 Chapter 12 Using the Application Framework
Getting a list of Session variables
The variable Session scope is registered as a ColdFusion structure. This lets you use
the ColdFusion Structure functions to get a list of Session variables. For example, you
can use cfloop with the StructFind function to output a list of Session variables
defined for a specific application.

To find a list of Client variables, you use the GetClientVariablesList function.

For more information on these functions, see the CFML Reference.

Using Application Variables
Application variables are available to all pages within an application, that is, pages
that have the same application name. Because they are persistent, you can pass
values between pages with a minimum of effort.

You set the application name in the cfapplication tag, normally on your
application’s Application.cfm page. The name you establish in the cfapplication
tag is accessible elsewhere in the application by using the
Application.ApplicationName variable. For example, you use this variable in the
cflock tag to restrict access to Application variables to one request at a time.

Unlike Client and Session variables, Application variables do not require that a client
name (client ID) is associated with them. Thus, they are available to any clients that
specify the same application name. Also, you do not need to use the cfapplication
tag to enable Application variables. Using the ColdFusion Administrator you can
enable or disable Application variables in all applications; you cannot override this
setting for an individual application.

Like Session variables, ColdFusion stores Application variables in the ColdFusion
Server’s memory and you can set timeout values for these variables either with
cfapplication, or by specifying timeouts in the ColdFusion Administrator.

For information on setting timeouts for variables, see Advanced ColdFusion
Administration.

Storing application data in Application variables
Application variables are designed to store application-level data. They are a
convenient place to store information that all pages of your application might need
no matter which client is running that application. Using Application variables, an
application could initialize itself, say, when the first user access any page of that
application. This information can then remain available indefinitely to all
subsequent hits of any pages of that application, by all users, thereby avoiding the
overhead of repeated initialization.

Because the data stored in Application variables is available to all pages of an
application and remains available until either a specific period of inactivity passes or
the ColdFusion Server shuts down, Application variables are very convenient.
However, because all clients running an application see the same set of Application

Using Application Variables 231
variables, they are not useful for client-specific information. To target variables for
specific clients, use Session or Client variables.

Application variable timeouts
Application variables have a specific lifetime. If no clients access the application
within the specified timeout period, ColdFusion Server destroys its Application
variables.

The default timeout period for Application variables is two days. On the Variables
page of the ColdFusion Administrator, you can define timeout values for application
and Session variables. For more information, see Advanced ColdFusion
Administration.

You can set the timeout period for Application variables within a specific application
(thereby overriding the default setting in the ColdFusion Administrator) by using the
applicationTimeout attribute of the cfapplication tag.

Tips for using Application variables
In general, Application variables are designed to hold information that you seldom
write but read often. In most cases, the values of these variables are set once, most
often when an application first starts. Then the values of these variables are
referenced many times throughout the life of the application or the course of a
session.

When using Application variables, keep in mind that these variables are shared by all
instances of an application that might be running on a server. Because of this
sharing, applications cannot assume that values saved in these variables are not
overwritten by other instances of the same application that might be running
simultaneously on the server. This is not a problem if you treat these variables as
write-once, read-many, but it can be a problem if they are written to
indiscriminately.

Getting a list of Application variables
Like the Session scope, the Application scope is registered as a ColdFusion structure.
This enables you to use the ColdFusion Structure functions to get a list of Application
and Session variables. For example, you can use cfloop with the StructFind
function to output a list of Application and Session variables defined for a specific
application.

232 Chapter 12 Using the Application Framework
Using Server Variables
Server variables are associated with a single ColdFusion Server. They are available to
all applications that run on the server. Use server variables for data that must be
accessed across clients and applications.

Server variables do not time out, but are lost when the server shuts down. You
cannot delete a Server variable. Therefore, you should limit the amount of data you
store in Sever variables.

Server variables are stored on a single server. As a result, you should not use Server
variables if you use ColdFusion on a server cluster.

ColdFusion provides the following standard read-only Server variables:

Variable Description

Server.ColdFusion.ProductName The name of the product, that is, ColdFusion
Server

Server.ColdFusion.ProductVersion The version number for the server that is running,
such as 5,0,0

Server.ColdFusion.ProductLevel The server product level, such as Enterprise

Server.ColdFusion.SerialNumber The serial number assigned to this server
installation

Server.ColdFusion.Locales The locales, such as English (US) and Spanish
(Mexican), supported by the server

Server.OS.Name The name of the operating system, such as
Windows NT

Server.OS.AdditionalInformation Additional information provided by the operating
system, such as the Service Pack number

Server.OS.Version The version number of the operating system,
such as 4.0

Server.OS.BuildNumber The specific operating system build, such as
1381

Locking Code with cflock 233
Locking Code with cflock
The cflock tag controls simultaneous access to ColdFusion code. The cflock tag
enables you to:

• Protect sections of code that access and manipulate shared data such as Session,
Application, and Server variables.

• Ensure that file updates do not fail because files are open for writing by other
applications or ColdFusion tags.

• Ensure that applications do not try to simultaneously access ColdFusion
extension tags written using the CFX API that are not thread-safe. This is only
necessary for CFX tags that are written in C++ and use shared (global) data
structures without protecting them from simultaneous access (are not
thread-safe).

• Ensure that applications do not try to simultaneously access databases that are
not thread-safe. This is not necessary for most database systems.

Failure to use cflock in these circumstances can result in data corruption and can
result in hanging the ColdFusion Server. Symptoms of this corruption include the
following:

• Unexpected error messages, particularly Unknown Exception errors

• cfserver process crashing, or stopping and restarting

• Unexpected values in shared variables

• Excessive growth in memory used by the cfserver process

• Operating system instability

Using cflock
You protect access to code by surrounding it in a cflock tag; for example:

<cflock scope="Application"
timeout="10"
type="Exclusive">
<cfif not isdefined("application.number")>

<cfset Application.number = 1>
</cfif>

</cflock>

How cflock works
ColdFusion Server is a multithreaded Web application server that can process
multiple page requests at a time. As a result, the server can attempt to access the
same information simultaneously as the result of two or more requests. While it is
safe to read data simultaneously, attempting to write data simultaneously or read
and write it at the same time can result in corrupted memory and can cause the
process to crash.

234 Chapter 12 Using the Application Framework
The cflock tag enables you to ensure that concurrently executing requests do not
access the same section of code simultaneously and thus manipulate shared data
structures, files, or CFXs inconsistently. It is important to remember that cflock
protects code sections not variables.

Lock types

The cflock tag offers two modes of locking, specified by the type attribute:

• Exclusive locks (the default lock type) allow only one request to process the
locked code. No other requests are allowed to start running code inside the tag
while a request has an exclusive lock. ColdFusion issues exclusive locks on a
first-come, first-serve basis.

Enclose all code that creates or modifies Session, Application, or Server variables
in exclusive cflock tags.

• Read-only locks allow multiple requests to execute concurrently, provided that
no exclusive locks are executing. ColdFusion allows you to set variables inside
read-only lock tag blocks. However, if you do set a shared variable inside a
read-only lock tag, you lose the advantages of locking. As a result, you must be
careful not to set any Session, Application, or Server variables inside a read-only
cflock tag body.

Enclose code that reads or tests Session, Application, or Server variables in
exclusive cflock tags. You specify a read-only lock by setting the
type="readOnly" attribute in the cflock tag.

Lock scopes and names

The cflock tag prevents simultaneous access to a sections of code, not variables. If
you have two sections of code that access the same variable, they too must be
synchronized to prevent them form running simultaneously. You do this by
identifying the locks with either scope or name attributes.

Note
ColdFusion does not require you to identify Exclusive locks. If you omit the
identifier, the lock is anonymous and you cannot synchronize the code in the cflock
tag block with any other code. It is acceptable to use an anonymous lock only when
the resource you are protecting is used nowhere else in your code. You must always
identify read-only locks.

Controlling access to data with the scope attribute

When the code that you are locking accesses Session, Application, or Server
variables, synchronize access by using the cflock scope attribute.

Locking Code with cflock 235
You can set the attribute to any of the following values:

If multiple code sections share a lock, the following rules apply:

• When code in a cflock tag block with the type Exclusive is running, code in
blocks with the same lock are not allowed run. They wait until the code with the
Exclusive lock completes.

• When code in a cflock tag block with the type read-only is running, code in other
blocks with the same lock and the read-only type can run, but any blocks with the
exclusive type cannot run and wait until all code with the read-only lock
completes.

Controlling locking access to files and CFX tags with the name attribute

The cflock name attribute provides a second mechanism for identifying locks. Use
this attribute when you use locks to protect code that manges file access or calls
non-thread-safe CFX code.

When you use the name attribute, specify the same name for each section of code that
accesses a specific file or a specific CFX tag.

Controlling lock timeouts

You must include a timeout attribute in your cflock tag. It specifies the maximum
time, in seconds, to wait to obtain the lock if it is not available. By default, if the lock
does not become available within the timeout period, ColdFusion generates an
exception error, which you can handle using cftry and cfcatch.

If you set the cflock throwOntTmeout attribute to No, processing continues after the
timeout at the line after the </cflock> end tag.

Under normal circumstances it should not take more than a few seconds to obtain a
lock. Very large timeouts can block request threads for long periods of time and
radically decrease throughput. Always use the smallest timeout value that does not
result in significant numbers of timeouts.

To prevent unnecessary timeouts, lock the minimum amount of code possible.
Whenever possible lock only code that sets or reads variables, not business logic or
database queries. One useful technique is to perform a time-consuming activity
outside of a cflock tag and assign the results to a Variables scope variable, then
assign the shared scope variable to the Variables scope variable’s value inside a
cflock block.

Scope Meaning

Server All code sections with this attribute on the server share a single lock.

Application All code sections with this attribute in the same application share a
single lock.

Session All code sections with this attribute that run in the same session and
application share a single lock.

236 Chapter 12 Using the Application Framework
For example, if you want to assign the results of a query to a Session variable, first get
the query results using a Variables scope variable in unlocked code. Then, assign the
query results to a Session variable inside a locked code section. The following code
illustrates this technique:

<cfquery name="Variables.qUser" datasource="#request.dsn#">
SELECT FirstName, LastName
FROM Users
WHERE UserID = #request.UserID#
</cfquery>
<cflock scope="Session" timeout="2" type="exclusive">
<cfset Session.qUser = Variables.qUser>
</cflock>

Using administrative lock management
You can specify several types of automatic locking and lock checking in ColdFusion
Administrator. Use these options when you are developing your code and if you
must maintain existing, poorly locked code.

Automatic lock checking and locking

The Locking page on the Server tab in the ColdFusion Administrator lets you specify
the following for variables in each of the three shared memory scopes: Session,
Application, and Server.

Selecting the No automatic checking or locking option results in the most efficient
code, but requires you to follow the full rules of locking. You should only select this
option after you finish debugging your program.

Full checking is very useful for debugging your code. You get errors to help indicate
missing locks. You can leave this feature on in production code to protect against
inadvertently unlocked variable accesses, but it adds processor overhead for
checking all accesses to shared variables, and all locking problems cause exceptions.

Type Description

No automatic
checking or locking

ColdFusion does not check for lock use and does not prevent
any invalid access of shared variables.

Full checking ColdFusion generates an exception error when your application
attempts to use any variable in the scope without protecting it
with a lock.

Automatic read
locking

If your application reads a variable without protecting it,
ColdFusion creates a read-only lock for the duration of the read.
As a result, ColdFusion blocks any attempt to write to the
variable (using code within a lock) until the read completes and
the read-only lock is released. If your application writes to any
variable in the scope without protecting it with a lock,
ColdFusion generates an exception error.

Locking Code with cflock 237
Automatic read locking also adds overhead because ColdFusion must insert read
locks and check variable access for locking. However, it can be useful if you already
have a site that does not use locking properly. In this case, you must only lock all
writes and do not have to add locks around all reads.

Single-threading sessions

The ColdFusion Administrator also allows you to specify single-threaded sessions. If
you select this option, each session is handled by a single thread in the ColdFusion
Server. As a result, one request from the client must complete before the next one
can begin. In this case, you do not need to lock Session variables, but the
performance of frames-based pages might be reduced because it prevents
simultaneous processing of requests from multiple frames.

Nesting locks and avoiding deadlocks
Inconsistent nesting of cflock tags and inconsistent naming of locks can cause
deadlocks (blocked code). If you are nesting locks, you must consistently nest cflock
tags in the same order and use consistent lock scopes (or names).

A deadlock is a state in which no request can execute the locked section of the page.
Thus, all requests to the protected section of the page are blocked until there is a
timeout. The following table shows one scenario that would cause a deadlock:

Once a deadlock occurs, neither of the users can do anything to break the deadlock,
because the execution of their requests is blocked until the deadlock is resolved by a
lock timeout.

In addition, if you nest locks of different types, you can cause a deadlock. An example
of this is nesting an exclusive lock inside a read lock of the same scope, or of the same
name.

In order to avoid a deadlock, you should lock code sections in a well-specified order
and name the locks consistently. In particular, if you need to lock access to the
Server, Application, and Session scopes, you must do so in the following order.

1 Lock the Session scope. In the cflock tag, specify the scope as "session."

2 Lock the Application scope. In the cflock tag, specify the scope as "application."

3 Lock the Server scope. In the cflock tag, specify the scope as "server."

4 Unlock the Server scope.

User 1 User 2

Locks the Session scope. Locks the Application scope.

Deadlock: Tries to lock application
scope, but application scope is already
locked by User 2.

Deadlock: Tries to lock session, but
session is already locked by User 1.

238 Chapter 12 Using the Application Framework
5 Unlock the Application scope.

6 Unlock the Session scope.

Note
You can skip any pair of lock/unlock steps in the preceding list if you do not need to
lock a particular scope. For example, you can omit steps 3 and 4 if you do not need to
lock the Server scope.

Examples of cflock
The following examples show how to use cflock in a variety of situations.

Example with Application, Server, and Session variables

This example shows how you can use cflock to guarantee the consistency of data
updates to variables in the Application, Server, and Session scopes.

This example does not handle exceptions that arise if a lock times out. As a result,
users see the default exception error page on lock timeouts.

The following sample code might be part of the Application.cfm file:

<cfapplication name="ETurtle"
sessiontimeout=#createtimespan(0,1,30,0)#
sessionmanagement="yes">

<!--- Initialize the session and application
variables that will be used by E-Turtleneck. Use
the session lock scope for the Session variables. --->

<cflock scope="Session"
timeout="10" type ="Exclusive">
<cfif not isdefined("session.size")>

<cfset session.size = "">
</cfif>
<cfif not isdefined("session.color")>

<cfset session.color = "">
</cfif>

</cflock>

<!--- Use the application lock for the
Application variable. This variable keeps
track of the total number of turtlenecks sold.
use the application lock scope for application variables. --->

<cflock scope="Application"
timeout="10"
type="Exclusive">
<cfif not isdefined("application.number")>

<cfset application.number = 1>

Examples of cflock 239
</cfif>
</cflock>

<!--- Always display the number of turtlenecks sold --->

<cflock scope="Application"
timeout="10"
type ="ReadOnly">
<cfoutput>
E-Turtleneck is proud to say that we have sold
#application.number# turtlenecks to date.
</cfoutput>

</cflock>

The remaining sample code could appear inside the application page where
customers place orders.

In this simple example, the Application.cfm page displays the Application.number
variable value. Because Application.cfm is processed before any code on each CFML
page, the number that displays after you click the submit button does not include the
new order. One way you can resolve this problem is by using the OnRequestEnd.cfm
page to display the value at the bottom of each page in the application.

<html>
<head>
<title>cflock Example</title>
</head>

<body>
<h3>cflock Example</h3>

<cfif isdefined("form.submit")>

<!--- Lock Session variables --->
<!--- Note that we use the automatically generated Session

ID as the order number --->
<cflock scope="Session"

timeout="10" type="ReadOnly">
<cfoutput>Thank you for shopping E-Turtleneck.
Today you have chosen a turtleneck in size
#form.size# and in the color #form.color#.
Your order number is #session.sessionID#.
</cfoutput>

</cflock>

<!--- Lock Session variables to assign form values to them.
To lock Session variables, you should get the session ID
with the sessionID member variable. --->

<cflock scope="Session"
timeout="10"
type="Exclusive">
<cfparam name=session.size default=#form.size#>
<cfparam name=session.color default=#form.color#>

</cflock>

240 Chapter 12 Using the Application Framework
<!--- Lock Application Variable application.number to
update the total number of turtlenecks sold. --->

<cflock scope="Application"
timeout="30" type="Exclusive">
<cfset application.number=application.number + 1>

</cflock>

<!--- Show the form only if it has not been submitted. --->
<cfelse>
<form action="cflock.cfm" method="Post">

<p> Congratulations! You have just selected
the longest wearing, most comfortable turtleneck
in the world. Please indicate the color and size
you want to buy.</p>

<table cellspacing="2" cellpadding="2" border="0">
<tr>
<td>Select a color.</td>
<td><select type="Text" name="color">

<option>red
<option>white
<option>blue
<option>turquoise
<option>black
<option>forest green
</select>

</td>
</tr>
<tr>

<td>Select a size.</td>
<td><select type="Text" name="size">

<option>small
<option>medium
<option>large
<option>xlarge
</select>

</td>
</tr>
<tr>

<td></td>
<td><input type="Submit" name="submit" value="Submit">
</td>

</tr>
</table>
</form>
</cfif>

</body>
</html>

Examples of cflock 241
Example of synchronizing access to a file system

The following example shows how to use cflock to synchronize access to a file
system. The cflock tag protects a cffile tag from attempting to append data to a
file already open for writing by the same tag executing on another request.

Note that if an append operation takes more that 30 seconds, a request waiting to
obtain an exclusive lock to this code might time out. Also, note the use of a dynamic
value for the name attribute so that a different locks controls access to each file. As a
result, locking access to one file does not delay access to any other file.

<cflock name=#filename# timeout=30 type="Exclusive">
<cffile action="Append"

file=#fileName#
output=#textToAppend#>

</cflock>

Example of protecting ColdFusion Extensions

The following example illustrates how you can build a custom tag wrapper around a
CFX tag that is not thread-safe. The wrapper forwards attributes to the
non-thread-safe CFX tag that is used inside a cflock tag.

<cfparam name="Attributes.AttributeOne" default="">
<cfparam name="Attributes.AttributeTwo" default="">
<cfparam name="Attributes.AttributeThree" default="">

<cflock timeout=5
type="Exclusive"
name="cfx_not_thread_safe">

<cfx_not_thread_safe attributeone=#attributes.attributeone#
attributetwo=#attributes.attributetwo#
attributethree=#attributes.attributethree#>

</cflock>

242 Chapter 12 Using the Application Framework

Chapter 13

Extending ColdFusion Pages
with CFML Scripting
ColdFusion offers a server-side scripting language, CFScript, that provides
ColdFusion functionality in script syntax. This JavaScript-like language gives
developers the same control flow, but without tags. You can also use CFScript to
write custom functions that you can use anywhere a ColdFusion expression is
allowed.

This chapter describes the CFScript language’s functionality and syntax.

Contents

• About CFScript .. 244

• The CFScript Language... 245

• Interaction of CFScript with CFML.. 249

• Defining and Using Custom Functions ... 250

244 Chapter 13 Extending ColdFusion Pages with CFML Scripting
About CFScript
The ColdFusion Server-side scripting language, CFScript, offers ColdFusion
functionality in script syntax.

This JavaScript-like language offers the same control flow, but without tags. CFScript
regions are bounded by <cfscript> and </cfscript> tags. You can use ColdFusion
expressions, but not CFML tags, inside a CFScript region.

CFScript example
The following example shows how you can rewrite a block of cfset tags in CFScript:

Using CFML tags
<cfset employee=structnew()>

<cfset employee.firstname=Form.firstname>
<cfset employee.lastname=Form.lastname>
<cfset employee.email=Form.email>
<cfset employee.phone=Form.phone>
<cfset employee.department=Form.department>

<cfoutput>
About to add #Form.firstname# #Form.lastname#

</cfoutput>

Using CFScript
<cfscript>

employee=StructNew();
employee.firstname=Form.firstname;
employee.lastname=Form.lastname;
employee.email=Form.email;
employee.phone=Form.phone;
employee.department=Form.department;
WriteOutput("About to add " & Form.firstname & " " & Form.lastname);

</cfscript>

The WriteOutput function appends text to the page output stream. Although you
can call this function anywhere within a page, it is most useful inside a cfscript
block. For information on the WriteOutput function, see the CFML Reference.

Supported statements
CFScript supports the following statements:

if-else while do-while

for break continue

for-in switch-case var (in custom functions only)

return (in custom functions only)

The CFScript Language 245
The CFScript Language
This section explains the syntax of the CFScript language.

Comments
Comments in CFScript blocks begin with two forward slashes (//) and end at the line
end. You can also enclose CFScript comments between /* and */. Note that you
cannot nest /* and */ inside other comment lines.

Variables
Variables can be of any ColdFusion type, such as numbers, strings, arrays, queries,
and COM objects. You can read and write variables within the script region.

Expressions
CFScript supports all CFML expressions. CFML expressions include operators (such
as +, -, EQ, and so on), as well as all CFML functions.

For information about CFML expression, operators, and functions, see the CFML
Reference.

Note
You cannot use CFML tags in CFScript.

Statements
In CFScript, semicolons define the end of a statement. Line breaks are insignificant.
Enclose multiple statements in curly braces to group them for use in an expression:

{ statement; statement; statement; }

The following statements are supported in CFScript:

Assignment: lval = expr ;

lval can be a simple variable, an array reference, or a member of a structure. For
example:

x = "positive";
y = x;
a[3]=5;
structure.member=10;

CFML expression: expr ;

StructInsert(employee,"lastname",FORM.lastname);

246 Chapter 13 Extending ColdFusion Pages with CFML Scripting
if-else: if(expr) statement [else statement] ;

if(score GT 1)
result = "positive";

else
result = "negative";

for loop: for (init-expr ; test-expr ; final-expr) statement ;

init-expr and final-expr can be one of the following:

• A single assignment expression, for example, x=5 or loop=loop+1

• Any ColdFusion expression, for example, SetVariable("a",a+1)

• Empty

The test-expr can be one of the following:

• Any ColdFusion expression, for example, A LT 5, loop LE x, or Y EQ "not found"
AND loop LT end

• Empty

Here are some examples of for loops:

for(Loop=1;
Loop LT 10;
Loop = Loop + 1)
a[loop]=loop;

// Complete for loop in a single line.
for(loop=1; loop LT 10; loop=loop+1)a[loop]=loop;

// Use braces to indicate multiple statements to loop over
for(; ;)
{

indx=indx+1;
if(Find("key",strings[indx],1))

break;
}

while loop: while (expr) statement ;

// Use braces to note the code to loop over
a = ArrayNew(1);
loop = 1;
while (loop LT 10)
{
 a[loop] = loop + 5;
 loop = loop + 1;
}

The CFScript Language 247
do-while loop: do statement while (expr) ;

// Complete do-while loop on a single line
a = ArrayNew(1);
loop = 1;
do {a[loop] = loop + 5; loop = loop + 1;} while (loop LT 10);

// Multiline do-while loop
a = ArrayNew(1);
loop = 1;
do
{
 a[loop] = loop + 5;
 loop = loop + 1;
}
while (loop LT 10);

switch-case: switch (expr) {case constant : statement break ; default : statement }

In this syntax, constant must be a constant (that is, not a variable, a function, or other
expression). Only one default statement is allowed. You can use multiple case
statements. You cannot mix Boolean and numeric case values in a switch statement.

No two constants can be the same inside a switch statement.

switch(name)
{

case "John":
{

male=true;
found=true;
break;

}
case "Mary":
{

male=false;
found=true;
break;

}
default:
{

found=false;
break;

}
} //end switch

for-in loop: for (variable in collection) statement ;

variable can be any ColdFusion identifier, and collection must be the name of an
existing ColdFusion structure.

for (x in mystruct) mystruct[x]=0;

248 Chapter 13 Extending ColdFusion Pages with CFML Scripting
continue: skip to next loop iteration

for (loop=1; loop LT 10; loop = loop+1)
{

if(a[loop] EQ 0) continue;
a[loop]=1;

}

break: break out of the current switch statement or loop

indx = 0;
for(; ;)
{

indx=indx+1;
if(Find("key",strings[indx],1))

break;
}

return, var: See “Defining and Using Custom Functions” on page 250

Reserved words
In addition to the names of ColdFusion functions and words reserved by ColdFusion
expressions (such as NOT, AND, IS, and so on), the following words are reserved in
CFScript. Do not use these words as variables or identifiers in your scripting code:

Differences from JavaScript
CFScript is similar to JavaScript, however, there are some key differences in CFScript:

• It uses ColdFusion expressions, which are neither a subset nor a superset of
JavaScript expressions. For example, there is no < operator in CFScript.

• It does not have user-defined variable declarations.

• It is case-insensitive.

• All statements end in a semicolon, and line breaks in the code are ignored.

• Assignments are statements, not expressions.

• Some implicit objects are not available, such as Window and Document.

Note
CFScript is not directly exportable to JavaScript. Only a limited subset of JavaScript
can run inside CFScript.

for while do if

else switch case break

default in continue function

var return

Interaction of CFScript with CFML 249
Interaction of CFScript with CFML
You enclose CFScript regions inside <cfscript> and </cfscript> tags. No other
CFML tags are allowed inside a cfscript region.

ColdFusion generates an error if a cfscript tag block does not contain at least one
CFScript statement, and CFScript comments are not considered statements. To
comment out all the contents of a cfscript tag block, put ColdFusion comment tags
around the entire block, including the <cfscript> and </cfscript> tags.

You can read and write ColdFusion variables inside CFScript, as this example shows:

<cfoutput query="patients">

<cfscript>
//‘testres' is a column in the "patients" query
if(testres EQ 1)

result="positive";
else

result="negative";
</cfscript>

<!--- The variable result takes its value from the script region --->
Test for #name# is #result#.

</cfoutput>

250 Chapter 13 Extending ColdFusion Pages with CFML Scripting
Defining and Using Custom Functions
You can define custom functions (also known as user-defined functions) and use
them in your application pages as you do standard ColdFusion functions. This
allows you to create a function for an algorithm or procedure that you use frequently,
and then use the function wherever you need the procedure. If you must change the
procedure, you change only one piece of code. You can use your function anywhere
that you can use a ColdFusion expression: in tag attributes, between # signs in
output, and in CFScript code.

Defining functions
You define functions using CFScript, in a manner similar to defining JavaScript
functions. The function must return a value. Functions can be recursive, that is, the
body of a function can call the function.

You can define a function in the following places:

• On the page where it is called (even after it is called, although this is not
recommended).

• On a page that you include using a cfinclude tag. The cfinclude tag must be
executed before the function gets called. For example, you can define all your
application’s functions on a single page and place a cfinclude tag at the top of
pages that use the functions.

Syntax Use the following syntax inside a cfscript tag to define a function:

function functionName([paramName1[, paramName2...]])
{

CFScript Statements
}

functionName
The name of the function. You cannot use the name of an standard ColdFusion
function name. You cannot use the same name for two different function
definitions. Function names cannot include periods.

paramName1...
Names of the parameters required by the function. The number of arguments
passed into the function must equal or exceed the number of parameters in the
function definition. If the calling page omits any of the required parameters,
ColdFusion generates a mismatched argument count error.

The body of the function definition must consist of one or more valid CFScript
statements.

Defining and Using Custom Functions 251
The following two statements are allowed only in function definitions. Each function
must have a return statement:

var variableName = initialValue;
Creates and initializes a variable that is local to the function (function variable).
This variable has meaning only inside the function and is not saved between
calls to the function. It has precedence in the function body over any variables
with the same name that exist in any other scopes. You never prefix a function
variable with a scope identifier, and their names cannot include periods.

All var statements must be at the top of the function declaration, before any
other statements. You must initialize all variables when you declare them. You
cannot use the same name for a function variable and a parameter.

return expression;
Evaluates expression, returns its value to the page that called the function, and
exits the function. You can return any valid ColdFusion variable type, including
structures, queries, and arrays.

Each function must execute a return statement.

Calling functions
You can call a function anywhere that you can use an expression, including in the
body of a cfoutput tag, in a ColdFusion Script, or in a tag attribute value. One
function can call another function, and you can use a function as a parameter to
another function.

You call custom functions the same way you call any built-in ColdFusion functions.

Using arguments and variables
The following sections discuss optional arguments and their use, how arguments get
passed, including the effects that the passing methods have, and how you use
variables inside functions.

Optional arguments and the Arguments array

A function can have optional arguments that you do not specify as parameters in the
definition. For example, you can write the following function that requires two
arguments and supports three additional optional arguments:

function MyFunction(MyArg1, MyArg2)

Any of the following function calls are then valid:

MyFunction(Value1, Value2)
MyFunction(Value1, Value2, Value3)
MyFunction(Value1, Value2, Value3, Value4)
MyFunction(Value1, Value2, Value3, Value4, Value5)

252 Chapter 13 Extending ColdFusion Pages with CFML Scripting
Each function has a built-in Arguments array containing all arguments passed to the
function: the required arguments specified by the function parameters followed by
any additional arguments included in the function call.

The function can determine the number of arguments passed to it by using the
ColdFusion function call ArrayLen(Arguments).

The function must retrieve the optional arguments by using the Arguments array. For
example, if the following function:

function MyFunction(MyArg1, MyArg2)

has three optional arguments, you can refer to the first two, required, arguments as
MyArg1 and MyArg2 or as Arguments[1] and Arguments[2]. You must refer to the
third and fourth and fifth, optional, arguments as Arguments[3], Arguments[4],
and Arguments[5].

However, you must be careful if you mix references to the same argument using both
its parameter name and its place in the Arguments array. Mixing is fine if all you do is
read the argument. If you write the argument, you should consistently use either the
parameter name or the Arguments array.

Passing arguments

ColdFusion passes arrays and simple data types including integers, strings, and time
and date values into the function by value. It passes queries and structures into the
function by reference. As a result, if you change the value of a query or structure
argument variable in the function, it changes the value of the variable that the calling
page used in calling the function. However, if you change the value of an array or
string argument variable in the function, it does not change the value of the string
variable in the calling page.

Using variables

A function can access all variables that are available in the calling page. In addition,
the function has its own private scope that contains the function parameters, the
Arguments array, and the var-declared variables. This scope is only accessible inside
the current instance of the function. As soon as the function exits, all the variables
are removed.

A function can use and change any variable that is available in the calling page,
including variables in the caller’s Variables (local) scope, as if the function were part
of the calling page. For example, if you know that the calling page has a local variable
called Customer_name (and there is no var variable named Customer_name) the
function can read and change the variable by referring to it as "Customer_name" or
(using better coding practice) "Variables.Customer_name".

Similarly, you can create a local variable inside a function and then refer to it
anywhere in the calling page after the function call. You cannot refer to the variable
before you call the function.

Because function var variables do not take a scope identifier and exist only while the
function executes, function variable names can be independent of variable names

Defining and Using Custom Functions 253
used elsewhere in your application. If a function must use a variable from another
scope that has the same name as a function variable, just prefix the external variable
with its scope identifier, such as Variables or Form.

For example, if you use the variable name x for a function scope (var) variable and
for a Variables scope (local) variable in the body of a page that calls the function, the
two variables are independent of each other. You cannot refer to the function
variable in the body of the page, but you can refer to the local variable in the function
as Variables.x.

Identifying custom functions
You can use the IsCustomFunction function to determine whether a name
represents a custom function. The function throws an error if its argument is not
defined as a ColdFusion object. As a result, if your code context does not ensure that
the name exists, you should use the isDefined function to ensure that it is defined.
For example:

<cfscript>
if(IsDefined("MyFunc"))

if(IsCustomFunction(MyFunc))
WriteOutput("MyFunc is a custom function");

else
WriteOutput("Myfunc is defined but is NOT a custom function");

else
WriteOutput("MyFunc is not defined");

</cfscript>

Note that the you do not surround the argument to IsCustomFunction in quotation
marks.

Examples of custom functons
The following simple examples show the use of custom functions.

Example 1 This function takes a principal amount, an annual percentage rate, and a loan
duration in months and returns the total amount of interest to be paid over the
period. You can optionally use the percent sign for the percentage rate, and include
the dollar sign and comma separators for the principal amount.

<cfscript>
function TotalInterest(principal, annualPercent, months)
{

Var years = 0;
Var interestRate = 0;
Var totalInterest = 0;
principal = trim(principal);
principal = REReplace(principal,"[\$,]","","ALL");
years = months / 12;
annualPercent = Replace(annualPercent,"%","","ALL");
interestRate = annualPercent / 100;
totalInterest = principal*(((1+ interestRate)^years)-1);

254 Chapter 13 Extending ColdFusion Pages with CFML Scripting
Return DollarFormat(totalInterest);
}
</cfscript>

You could use the TotalInterest function in a cfoutput tag of a form’s action page as
follows:

<cfoutput>
Loan amount: #Form.Principal#

Annual percentage rate: #Form.AnnualPercent#

Loan duration: #Form.Months# months

TOTAL INTEREST: #TotalInterest(Form.Principal, Form.AnnualPercent,
Form.Months)#

</cfoutput>

Example 2 This function shows the use of optional arguments. It takes two or more arguments
and adds them together.

<cfscript>
function Sum2(a,b)
{

var sum = a + b;
var arg_count = ArrayLen(Arguments);
var opt_arg = 3;
for(; opt_arg LTE arg_count; opt_arg = opt_arg + 1)
{

sum = sum + Arguments[opt_arg];
}
return sum;

}
</cfscript>

Using custom functions effectively
These notes provide information that will help you use custom functions more
effectively.

Using Application.cfm

Consider putting custom functions that you use frequently on the Application.cfm
page.

Queries as function parameters

When you call a custom function in the body of a tag that has a query attribute, such
as cfloop query=... tag, a query column name parameter is normally passed as a
single element of the column, not the entire column. Therefore, functions that
manipulate query data and are called within the bodies of ColdFusion tags with
query attributes should only manipulate one query row.

Defining and Using Custom Functions 255
You can use functions that manipulate many rows of a query outside such tags.
There you can pass in a query and loop over it in the function. The following
example, which changes text in a query column to uppercase, illustrates using a
function to modify multiple query rows.

function UCaseColumn(myquery, colName)
{

var currentRow = 1;
for (; currentRow lte myquery.RecordCount;

currentRow = currentRow + 1)
{

myquery[colName][currentRow] =
UCase(myquery[colName][currentRow]);

}
}

Evaluating strings in functions

If your custom function evaluates parameters that contain strings, you must make
sure that all variable names in the string are fully qualified to avoid conflicts with
function local variables. In the following example, you get the expected results if you
pass the fully qualified argument, Variables.myname, but you get the unexpected
function local variable value if you pass the argument unqualified, as myname.

<CFScript>
myname = "globalName";
function readname(name)
{

var myname = "localName";
return (Evaluate(name));

}
</CFScript>

<cfoutput>
The result of calling readname with "myname" is:

#readname("myname")#

<!--- whoops, collides with local variable name --->

The result of calling readname with "variables.myname" is:
#readname("variables.myname")#
<!--- ok. Finds the name passed in --->

</cfoutput>

Passing arrays to custom functions

Arrays, unlike structures, are passed to custom functions by value. This means the
function gets a new copy of the array and the array in the calling page is unchanged
by the function. For more efficiency, and if you want a function to modify an array in
the calling page, store an array as a member of a structure, pass the structure, and
reference the array through the structure.

The following example passes an array and a structure containing the array to a
function. The function changes the array contents using both of the parameters. The
code calls the function and displays the resulting array contents. The change the

256 Chapter 13 Extending ColdFusion Pages with CFML Scripting
function makes using the structure appears, but the change the function makes
using the directly passed array does not affect the array outside the function.

<CFScript>
//Create a two-element array inside a structure
mystruct = StructNew();
mystruct.myarray = ArrayNew(1);;
mystruct.myarray[1] = "This is the original element one";
mystruct.myarray[2] = "This is the original element two";

//Define a custom function to manipulate both
//an array in a structure (using struct_param) and
//an array that is passed directly (using array_param).
function setarray(struct_param, array_param)
{

//Change the first element of the array passed in the structure
struct_param.myarray[1] = "This is the NEW element one";
//Change the seond element of the directly-passed array
array_param[2] = "This is the NEW element two";
return "success";

}
//Call the function passing the structure and the array
setarray(mystruct, mystruct.myarray);

</CFScript>

<CFOutput>
<!--- The element one is changed --->

#mystruct.myarray[1]#
<!--- Element two is unchanged because the function got a copy --->

#mystruct.myarray[2]#
</CFoutput>

Error handling

You can handle errors in custom functions by writing a status variable indicating
success or failure and some information about the failure. You can also return a
special value to indicate failure. The following sketch outlines possible combinations
of both these approaches:

function bigCalc(x, y, errorInfo)
{

// Clear error state
// This allows errorInfo struct to be reused
structClear(errorInfo);

var isOK = true;

// Do work, populate fields in errorInfo such as
// errorNumber, errorMsg, errorDetail, whatever
...

if (isOK)
{

return calculatedValue;

Defining and Using Custom Functions 257
}
else
{

// Need to return error value
// Caller will look at value and then decide to look at errorInfo
// Alternatively, caller can look at errorInfo and see whether
// some pre-defined fields are available
return -1; // or "" or whatever we have agreed to...

}
}

errorInfo = structNew();

result = bigCalc(x, y, errorInfo);

if (result eq -1)
{

// use information from errorInfo
}

or

if (structKeyExists(errorInfo, "errorMsg"))
{

// error
}

anotherResult = bigCalc(x + 10, y + 30);

...

258 Chapter 13 Extending ColdFusion Pages with CFML Scripting

Chapter 14

Using Regular Expressions in
Functions
This chapter describes how regular expressions work in the following ColdFusion
functions:
• REFind

• REFindNoCase

• REReplace

• REReplaceNoCase

This chapter does not apply to regular expressions used in the cfinput and
cftextinput tags. These tags use JavaScript regular expressions, which have a
slightly different syntax than ColdFusion regular expressions.

For information on JavaScript regular expressions, see “Input Validation with cfform
Controls,” in Chapter 9. For detailed descriptions of the ColdFusion functions that
use regular expressions, see the CFML Reference.

Contents

• About Regular Expressions ... 260

• Basic Regular Expression Rules.. 261

• Multicharacter Regular Expressions .. 263

• Using Backreferences.. 265

• Returning Matched Subexpressions.. 266

• Regular Expression Examples .. 267

260 Chapter 14 Using Regular Expressions in Functions
About Regular Expressions
Regular expressions allow you to perform very powerful and flexible string search
and replace operations. In traditional search and replace operations, as in the Find
and Replace functions of ColdFusion, you must provide the exact text to be searched
for. This makes searches for dynamic data very difficult, if not impossible. For
example, how can you find the first occurrence in a string of any word that consists
entirely of capital letters that has spaces around it? Using regular expressions, the
task is trivial:

<cfset IndexOfOccurrence=REFind(" [A-Z]+ ","Some BIG string")>
<!--- The value of IndexOfOccurrence is 5 --->

You often process large amounts of dynamic textual data. Regular expressions can be
invaluable in writing complex ColdFusion applications.

You can use the case-insensitive functions, REFindNoCase and REReplaceNoCase, for
expressions where the search string is likely to be mixed case.

Basic Regular Expression Rules 261
Basic Regular Expression Rules
This section describes the basic rules for creating regular expressions (REs),
including single-character regular expressions.

The following are the basic rules for regular expressions:

• Special characters are: + * ? . [^ $ () { | \

• Any character that is not a special character matches itself.

• A backslash (\) followed by any special character matches the literal character
itself, that is, the backslash escapes the special character.

• A period (.) matches any character, including newline. To match any character
except a newline, use [^#chr(13)##chr(10)#], which excludes the ASCII carriage
return and line feed codes. The corresponding escape codes are \r and \n.

• A set of characters enclosed in brackets ([]) is a one-character RE that matches
any of the characters in that set. For example, "[akm]" matches an “a”, “k”, or
“m”. A dash in a set of characters inside braces indicates a range of characters; for
example, [a-z] matches any lowercase letter.

• If the first character of a character set is the caret (^), the RE matches any
character except those in the set. It does not match the empty string; for example:
[^akm] matches any character except “a”, “k”, or “m”. The caret loses its special
meaning if it is not the first character of the set.

• To make a regular expression case insensitive, substitute individual characters
with character sets; for example, [Nn][Ii][Cc][Kk].

• If you want to include] (closing square bracket) in square brackets it must be the
first character. Otherwise, it does not work even if you use \]. The following
example illustrates this:

<!--- Want to replace closing square bracket and all a’s with * --->
<cfset strSearch = "[Test message]">
<!--- Next line does not work since] is not the FIRST character

within [] --->
<cfset re = "[a\]]">
<cfoutput>REReplace(#strSearch#,#re#,"*","ALL") -

#REReplace(strSearch,re,"*","ALL")#

Neither ’]’ nor ’a’ was replaced because we searched for ’a’
followed by ’]’

</cfoutput>
<!--- Next line works since] is the FIRST character within [] --->
<cfset re = "[]a]">
<cfoutput>REReplace(#strSearch#,#re#,"*","ALL") -

#REReplace(strSearch,re,"*","ALL")#

Both ’a’ and ’]’ were Replaced with *
</cfoutput>

Character classes
In ColdFusion regular expressions, you can specify a character using one of the
POSIX character classes. You enclose the character class name inside two square
brackets, as in this example:

REReplace (“Macromedia Web Site”,”[[:space:]]”,”*”,”ALL”)

262 Chapter 14 Using Regular Expressions in Functions
This code replaces all the spaces with *, producing this string:

Macromedia*Web*Site

The following table shows the POSIX character classes that ColdFusion supports:

Character Class Matches

alpha Matches any letter. Same as [A-Za-z].

upper Matches any uppercase letter. Same as [A-Z].

lower Matches any lowercase letter. Same as [a-z].

digit Matches any digit. Same as [0-9].

alnum Matches any alphanumeric character. Same as [A-Za-z0-9].

xdigit Matches any hexadecimal digit. Same as [0-9A-Fa-f].

space Matches a tab, new line, vertical tab, form feed, carriage return,
or space.

print Matches any printable character.

punct Matches any punctuation character, that is, one of ! ‘ # S % & ` ()
* + , - . / : ; < = > ? @ [/] ^ _ { | } ~

graph Matches any of the characters defined as a printable character
except those defined as part of the space character class.

cntrl Matches any character not part of the character classes [:upper:],
[:lower:], [:alpha:], [:digit:], [:punct:], [:graph:], [:print:], or [:xdigit:].

Multicharacter Regular Expressions 263
Multicharacter Regular Expressions
You can use the following rules to build multicharacter regular expressions:

• Parentheses group parts of regular expressions together into grouped
subexpressions that you can be treat as a single unit; for example, (ha)+ matches
one or more instances of “ha”.

• A plus sign (+) following a one-character regular expression or grouped
subexpressions matches one or more occurrences of the regular expression; for
example, [a-z]+ matches one or more lowercase characters.

• An asterisk (*) following a one-character regular expression or grouped
subexpressions matches zero or more occurrences of the regular expression; for
example, [a-z]* matches zero or more lowercase characters. Since a regular
expression followed by an * can match the empty string, you can get unexpected
results when there is no actual match. For example,

<cfoutput>REReplace("Hello","[T]*","7","ALL") -
#REReplace("Hello","[T]*","7","ALL")#
</cfoutput>

results in the following output:

REReplace("Hello","[T]*","7","ALL") - 7H7e7l7l7o

Here the regular expression [T]* can match empty strings. It first matches the
empty string before “H” in “Hello”. Next, (note that the “ALL” artgument tells
REReplace to replace all instances of an expression), the empty string before “e”
is matched and so on until the empty string before “o” is matched. This result
might be unexpected. The workarounds for these types of problems are specific
to each case. In some cases you can use [T]+, which requires at least one “T”,
instead of [T]*. Alternatively, you might be able to specify an additional pattern
after [T]*. In the following example the regular expression has a “W” at the end:

<cfoutput>REReplace("Hello World","[T]*W","7","ALL") –
#REReplace("Hello World","[T]*W","7","ALL")#
</cfoutput>

This expression results in the following more predictable output:

REReplace("Hello World","[T]*W","7","ALL") - Hello 7orld

• A one-character regular expression or grouped subexpression followed by a
question mark (?) matches zero or one occurrences of the regular expression; for
example, xy?z matches either “xyz” or “xz”.

• The concatenation of regular expressions creates a regular expression that
matches the corresponding concatenation of strings; for example, [A-Z][a-z]*
matches any capitalized word.

• The OR character (|) allows a choice between two regular expressions; for
example, jell(y|ies) matches either “jelly” or “jellies”.

• The following suffixes match repetitions of a regular expresion:

− {m,n}, where m is 0 or greater and n is greater than or equal to m, forces a
match of m through n (inclusive) occurrences of the preceding regular
expression; for example, (ba){2,4} matches “baba”, “bababa”, and
“babababa”, but not “ba” or “babababababa”.

− {m,} forces a match of at least m occurrences of the preceding regular
expression. The syntax {,n} is not allowed.

264 Chapter 14 Using Regular Expressions in Functions
An excellent reference on regular expressions is Mastering Regular Expressions,
Jeffrey E. F. Friedl. O’Reilly & Associates, Inc., 1997. ISBN: 1-56592-257-3, http://
www.oreilly.com.

Limiting input string size
In CFML regular expression functions, large input strings (greater than
approximately 20,000 characters) cause a debug assertion failure and a regular
expression error occurs. To avoid this, break your input into smaller chunks, as the
following example shows. Here the variable input has a size greater than 50000.

<cfset test = mid(input, 1, 20000)>
<cfset out1 = REReplace(test, "[

#Chr(9)##Chr(13)##Chr(10)#]+#Chr(13)##Chr(10)#", "#chr(10)#",
"ALL")>

<cfset test = mid(input, 20001, 20000)>
<cfset out2 = REReplace(test, "[

#Chr(9)##Chr(13)##Chr(10)#]+#Chr(13)##Chr(10)#", "#chr(10)#",
"ALL")>

<cfset test = mid(input, 40001, len(input) - 40000)>
<cfset out3 = REReplace(test, "[

#Chr(9)##Chr(13)##Chr(10)#]+#Chr(13)##Chr(10)#", "#chr(10)#",
"ALL")>

<cfset result = out1 & out2 & out3>

Anchoring a regular expression to a string
You can anchor all or part of a regular expression to either the beginning or end of
the string being searched:

• If the caret (^) is at the beginning of a (sub)expression, the matched string must
be at the beginning of the string being searched.

• If the dollar sign ($) is at the end of a (sub)expression, the matched string must be
at the end of the string being searched.

Using Backreferences 265
Using Backreferences
ColdFusion Server supports backreferencing, which allows you to match text in
previously matched sets of parentheses. A slash followed by a digit n (\n) refers to the
nth subexpression in parentheses.

One use for backreferencing is in searching for doubled words; for example, to find
instances of “the the” or “is is” in text. The following example shows the syntax for
backreferencing in regular expressions in ColdFusion:

REReplace("There is is coffee in the the kitchen",
"([A-Za-z]+)[]+\1","*","ALL")

This code searches for words that are all letters ([A-Za-z]+) followed by one or more
spaces []+ followed by the first matched subexpression in parentheses. The parser
detects the two occurrences of is as well as the two occurrences of the and replaces
them with an asterisk, resulting in the following text:

There * coffee in * kitchen

Using backreferences in replacement strings
You can use backreferences in replacement strings. Backreferences in the
replacement string refer to matched subexpressions in the regular expression search.
For example, to replace all repeated words in a text string with a single word, use the
following syntax:

REReplace("There is is a cat in in the kitchen",
"([A-Za-z]+)[]+\1","\1")

This results in the sentence:

“There is a cat in in the kitchen”

You can use the optional fourth parameter in REReplace, scope, to replace all
repeated words, as in the following code:

REReplace("There is is a cat in in the kitchen",
"([A-Za-z]+)[]+\1","\1","ALL")

This results in the following string:

“There is a cat in the kitchen”

Note
To use backreferences in either the search string or the replace string, you must use
parentheses around the subexpression. Otherwise, ColdFusion throws an exception.

266 Chapter 14 Using Regular Expressions in Functions
Returning Matched Subexpressions
The REFind and REFindNoCase functions allow you to get information about
matched subexpressions. If you set these functions’ fourth parameter,
ReturnSubExpression, to True, the function returns a CFML structure with two
arrays containing the positions and lengths of text strings that match the
subexpressions of the first instance of a matched regular expression pattern.

The returned structure has two keys, pos and len. The pos array contains the
position of the subexpressions. The len array has the length of each subexpression.
The first element of each array contains information about the complete matched
expression, and indices 2 onwards contain information about the parenthesized
elements. If there are no occurrences of the regular expression, the pos and len
arrays each contain 1 element with a value of 0.

In the following example the first match for the expression ([A-Aa-z]+)[]+, is “is is”.
The expression [A-Za-z]+ is a subexpression of the complete regular expression.

<cfset subExprs=REFind("([A-Za-z]+)[]+\1",
"There is is a cat in in the kitchen",1,"True")>

When ColdFusion executes the ReFind function, subExprs.pos[1]=7,
subExprs.len[1]=5, subExprs.pos[2]=7, and subExprs.len[2]=2.

The entries subExprs.pos[1] and subExprs.len[1] refer to the entire matched
expression (“is is”), while subExprs.pos[2] and subExprs.len[2] refer to the first
parenthesized subexpression (“is”). Because REFind returns information on the first
regular expression match only, the subExprs structure does not contain information
about the second match to the regular expression, "in in".

For a full discussion of subexpression usage, see the sections on REFind and
REFindNoCase in the ColdFusion Functions chapter of the CFML Reference.

Regular Expression Examples 267
Regular Expression Examples
The following examples show some regular expressions and describe what they
match:

Regular expressions in CFML
The following examples of CFML show some common uses of regular expression
functions:

Expression Description

[\?&]value= A URL parameter value in a URL.

[A-Z]:(\\[A-Z0-9_]+)+ An uppercase DOS/Windows full
path that (a) is not the root of a drive,
and (b) has only letters, numbers,
and underscores in its text.

[A-Za-z][A-Za-z0-9_]* A ColdFusion variable with no
qualifier.

([A-Za-z][A-Za-z0-9_]*)(\.[A-Za-z][A-Za-
z0-9_]*)?

A ColdFusion variable with no more
than one qualifier; for example,
Form.VarName, but not
Form.Image.VarName.

(\+|-)?[1-9][0-9]* An integer that does not begin with a
zero and has an optional sign.

(\+|-)?[1-9][0-9]*(\.[0-9]*)? A real number.

(\+|-)?[1-9]\.[0-9]*E(\+|-)?[0-9]+ A real number in engineering
notation.

a{2,4} Two to four occurrences of “a”: aa,
aaa, aaaa.

(ba){3,} At least three “ba” pairs: bababa,
babababa, and so on..

Expression Returns

REReplace (CGI.Query_String,
"CFID=[0-9]+[&]*", "")

The query string with parameter CFID and
its numeric value stripped out.

REReplace(“I Love Jellies”,
”[[:lower:]]”,”x”,”ALL”

I Lxxx Jxxxxxx

REReplaceNoCase(“cabaret”,”[A-Z]”,
”G”,”ALL”)

GGGGGGG

REReplace (Report,
"\$[0-9,]*\.[0-9]*", "$***.**")",
"")

The string value of the variable Report with
all positive numbers in the dollar format
changed to "$***.**".

268 Chapter 14 Using Regular Expressions in Functions
REFind ("[Uu]\.?[Ss]\.?[Aa}\.?",
Report)

The position in the variable Report of the
first occurrence of the abbreviation USA.
The letters can be in either case and the
abbreviation can have a period after any
letter.

REFindNoCase("a+c","ABCAACCDD") 4

REReplace("There is is coffee in
the the kitchen","([A-Za-z]+)
[]+\1","*","ALL")

There * coffee in * kitchen

REReplace(report, "<[^>]*>", "",
"All")

Removes all HTML tags from a string value
of the report variable.

Expression Returns

Chapter 15

Indexing and Searching Data
You can provide a full-text search capability for documents and data sources on a
ColdFusion site by enabling the Verity search engine.

ColdFusion 5 supports two Verity search engines: the default Verity search engine
(VDK mode) and a restricted version of the Verity K2 Server. The ColdFusion
installation and administration documentation provides information about using
both engines. ColdFusion CFML tags for the two engines are identical except for how
you specify the collection and external tag attributes.

This chapter provides and overview of how use the Verity search engines to index
and search data for your application.

Contents

• Searching a ColdFusion Web Site... 270

• Supported File Types... 271

• Support for International Languages .. 272

• Creating a Searchable Data Source .. 273

• Indexing Query Results... 282

• Using Query Expressions .. 285

• Managing Collections ... 298

270 Chapter 15 Indexing and Searching Data
Searching a ColdFusion Web Site
Until now, you have searched for records in databases based on the value of
particular fields using ODBC. However, to efficiently search through paragraphs of
text or files of varying types you need full-text search capabilities. The Verity search
engines are bundled with ColdFusion to provide full-text indexing and searching.

Here are some of the ways to use Verity in ColdFusion:

• The ColdFusion online documentation employs Verity to let you to search the
installed document set.

• Index your Web site and provide a generalized search mechanism, such as a form
interface, for executing searches.

• Index specific directories containing documents for subject-based searching.

• Index cfquery result sets, giving your end users the ability to search against the
data. Because collections are made up of data optimized for retrieval, this
method is much faster than performing multiple database queries to return the
same data.

• Index cfldap and cfpop query results.

• Manage and search collections generated outside of ColdFusion using native
Verity tools. This additional capability requires only that the full path to the
collection be specified in the index command.

• Index e-mail generated by ColdFusion application pages and create a searching
mechanism for the indexed messages.

• Build collections of inventory data and make those collections available for
searching from your ColdFusion application pages.

• Support international users in a range of languages from the cfindex,
cfcollection, and cfsearch tags.

Advantages of using Verity
Verity can index the output from queries so that you or an end user can search
against the result sets. Searching query results has a clear advantage over using SQL
to search a database directly in speed of execution because pointers to the result sets
are stored in a Verity index that is optimized for searching. You can reduce the
programming overhead of query constructs by allowing users to construct their own
queries and execute them directly. You need only be concerned with presenting the
output to the client browser.

Verity can index database text fields, such as notes and product descriptions, that
cannot be effectively indexed by native database tools.

When indexing collections containing documents in Adobe Acrobat (PDF) format,
Verity scans for the document title (if one has been entered in Acrobat Exchange) in
addition to the document text and displays the title in the search results list.

Indexing Web pages returns the URL for each document. This is a valuable
document management feature.

Supported File Types 271
Supported File Types
The ColdFusion Verity implementation supports a wide array of file and document
types. As a result, you can index Web pages, ColdFusion applications, and many
binary document types and produce search results that include summaries of these
documents.

To support multiple WYSIWYG document types, Verity bundles the KeyView Filter
Kit. The KeyView Filter Kit includes document filters that support the indexing and
viewing of over 45 native document formats. Numerous popular document suites
and formats are supported, including Microsoft Office 95, 97 and 2000, Corel
WordPerfect, Microsoft Word, Microsoft Excel, Lotus AMI Pro, and Lotus 1-2-3.

The Verity KeyView filters support the following formats:

Word Processing

• Applix Words (v4.2, 4.3, 4.4)

• HTML (Verity Zone Filter)

• Lotus AmiPro (v2.3)

• Lotus Ami Professional Write Plus

• Lotus Word Pro (v96, 97)

• Microsoft RTF

• Microsoft Word (v2, 6, 95, 97, 2000)

• Microsoft Word Mac (v4, 5, 6)

• Microsoft Word PC (v4.,5, 6)

• Microsoft Works

• Microsoft Write

• PDF (Verity PDF Filter)

• Text files (Verity Text Filter)

• Unicode

• WordPerfect (v5.x, 6, 7, 8)

• WordPerfect Mac (v2, 3)

• XyWrite (v4.12)

Spreadsheets

• Applix Spreadsheets (v4.3, 4.4)

• Corel QuattroPro (v7, 8)

• Lotus 1-2-3 (v2, 3, 4, 5, 96, 97)

• Microsoft Excel (v3, 4, 5, 96, 97, 2000)

• Microsoft Works spreadsheet

Presentation Graphics

• Corel Presentations (v.7.0, 8.0)

• Lotus Freelance (v.96, 97)

• Microsoft PowerPoint (v4.0, 95, 97, 2000)

272 Chapter 15 Indexing and Searching Data
Support for International Languages
The ColdFusion International Language Search Pack is not shipped with
ColdFusion, but is available on a separate CD-ROM free of charge. To order the
Language Search Pack, contact Macromedia Customer Service or visit the online
store at http://www.coldfusion.com/store. It can be installed to index data in any of
the following languages:

• Danish

• Dutch

• Finnish

• French

• German

• Italian

• Norwegian

• Portuguese

• Spanish

• Swedish

The default language for Verity collections is English. To index data in one of the
other supported languages, you must select the language from the drop-down list
when you create a collection on the ColdFusion Administrator Verity page.

The cfindex and cfsearch tags have an optional language attribute that you use to
specify the language of the collection you are searching. If you do not specify a
language in these tags, ColdFusion checks the registry for the collection’s language.
If this is defined, ColdFusion uses the language. Otherwise, it assumes that the
language is English.

By default the dictionaries are installed in \cfusion\verity\common in Windows and
in /opt/coldfusion/verity/common in UNIX.

ColdFusion supports Verity Locales Using LinguistX™ to support localization. These
predefined locales have been developed by Verity based on technology from Inxight
LinguistX. These languages are supported: English, Danish, Finnish, French,
German, Dutch, Italian, Norwegian (Bokmal and Nynorsk), Portuguese, Spanish,
and Swedish.

ColdFusion also supports Verity Locales for Asian Languages to enable localization
in languages not supported by Verity Locales Using LinguistX. The Verity Locales for
Asian Languages are based on ICU (IBM® Classes for Unicode) technology from
IBM. These languages are supported: Japanese, Korean, Traditional Chinese,
Simplified Chinese, Russian.

Creating a Searchable Data Source 273
Creating a Searchable Data Source
You must do the following steps to create a searchable data source:

1 Create a collection.

You can do this either through the ColdFusion Administrator or
programmatically.

2 Populate and index the collection.

You must select the data and generate the index. You can perform this task either
through the ColdFusion Administrator or programmatically.

3 Design a search interface and a results page so that users can access the
searchable data source.

You can use the Verity Wizard in ColdFusion Studio to create ColdFusion pages that
index and search a collection. (The wizard does not create a page for creating the
collection.) To run the wizard, select File > New and select the Verity Wizard from the
CFML tab in the New Document dialog box.

Creating a Collection
The Verity engine performs searches against collections. A collection is a special
database created by Verity that contains pointers to the indexed data that you specify
for that collection. ColdFusion’s Verity implementation supports collections of three
basic data types:

• Text files such as HTML pages and CFML pages

• Binary documents (see “Supported File Types” on page 271)

• Result sets returned from cfquery, cfldap, and cfpop queries

You can build a collection from individual documents or from an entire directory
tree. Collections can be stored anywhere, so you have a great deal of flexibility in
accessing indexed data.

You can use either of the following methods to create a Verity collection:

• Make selections on the ColdFusion Administrator Verity Collections page

• Code the cfcollection tag

Using the ColdFusion Administrator to create a collection

You can use the ColdFusion Administrator to create a new collection or map an
existing collection.

Creating a new collection

Use the following procedure to create a new collection.

To create a collection:

1 Open the ColdFusion Administrator Verity Collections page.

274 Chapter 15 Indexing and Searching Data
If you checked the option to install the ColdFusion documentation, the
documentation collection is listed by default. The Verity engine is used to search
the online documents.

2 In the top section of the page, enter a name for the collection.

3 Enter a path for the directory location of the new collection.

By default, new collections are added to \Cfusion\Verity\Collections\ in
Windows and /opt/coldfusion/verity/collections in UNIX.

4 If you have an International Language Search Pack installed, you can select a
language other than English for the collection from the drop-down list.

5 Make sure Create a new collection is selected.

6 Click Submit Changes.

When the collection is created, the name and full path of the new collection
appear in the Verity Collections list at the top of the page.

Enabling access to an existing collection

You can easily enable access to a collection on the network by creating a local
reference (an alias) for that collection. The collection only needs to be a valid Verity
collection; it does not matter whether the collection was created within ColdFusion
or another tool.

Use the following procedure to enable access to an existing collection.

To add an existing collection:

1 Open the ColdFusion Administrator Verity Collections page.

2 In the top section of the ColdFusion Administrator Verity Collections page, enter
the collection alias.

3 Enter the full path to the collection.

4 Select a language, if needed.

5 Click Map an existing collection.

6 Click Submit Changes.

Creating a collection with the cfcollection tag

Creating and maintaining collections from a CFML application eliminates the need
to access the ColdFusion Administrator. You might prefer this technique if you need
to schedule collection creation. It also allows you to allow users to create collections
without exposing them to the ColdFusion Administrator.

Creating a Searchable Data Source 275
To create a simple collection form page:

1 Open a new file in ColdFusion Studio.

2 Modify the file so that it appears as follows:

<html>
<head>

<title>Collection Creation Input Form</title>
</head>

<body>
<h2>Specify a collection</h2>
<form action="collectioncreateaction.cfm" method="POST">

<p>Collection name: <input type="text" name="CollectionName"
size="25"></p>

<p>What do you want to do with the collection?</p>
<input type="radio"

name="CollectionAction"
value="Create" checked>Create

<input type="radio"
name="CollectionAction"
value="Repair">Repair

<input type="radio"
name="CollectionAction"
value="Optimize">Optimize

</p>
<input type="submit"

name="submit"
value="Submit">

</form>

</body>
</html>

3 Save the file as collectioncreateform.cfm.

Note that this file simply shows how the form variables are used and does not
perform error checking.

To create a collection action page:

1 Open a new file in ColdFusion Studio.

2 Modify the file so that it appears as follows:

<html>
<head>

<title>cfcollection</title>
</head>

<body>
<h2>Collection creation</h2>

<cfoutput>

<cfswitch expression=#Form.collectionaction#>

276 Chapter 15 Indexing and Searching Data
<cfcase value="Create">
<cfcollection action="Create"
collection="#Form.CollectionName#"
path="C:\CFUSION\Verity\Collections\">
<p>The collection #Form.CollectionName# is created.

</cfcase>

<cfcase value="Repair">
<cfcollection action="Repair"
collection="#Form.CollectionName#">
<p>The collection #Form.CollectionName# is repaired.

</cfcase>

<cfcase value="Optimize">
<cfcollection action="Optimize"
collection="#Form.CollectionName#">
<p>The collection #Form.CollectionName# is optimized.

</cfcase>

<cfcase value="Delete">
<cfcollection action="Delete"
collection="#Form.CollectionName#">
<p>Collection deleted.

</cfcase>
</cfswitch>

</cfoutput>
</body>
</html>

3 Save the file as collectioncreateaction.cfm.

4 View the file collectioncreateform.cfm in your browser, enter values and
submit the form.

Populating and indexing a collection
When you create a new collection, it is just an empty shell. You can use either of the
following methods to populate a Verity collection:

• Use the ColdFusion Administrator Verity Collections page.

• Code the cfindex tag.

Note
You can index and search against Verity collections created outside of ColdFusion by
using the external attribute of cfindex and cfsearch.

Creating a Searchable Data Source 277
Selecting an indexing method
Use the following guidelines to determine which method to use:

Using ColdFusion Administrator

To use ColdFusion Administrator to index a collection:

1 Select a collection name in the Verity Collections box.

2 Click Index to open the index page.

3 Edit the File Extensions box so that it lists the types of files to index, either as a
single file type or multiple file types separated by commas.

4 Type in the directory path containing the files to be indexed or click Browse
Server and navigate to the directory in which to begin the index.

5 Select the Recursively Index Sub Directories box if you want to extend the
indexing operation to all directories below the selected path.

6 (Optional) Enter a Return URL to prepend to all indexed files. This step lets you
easily create a link to any of the files in the index. A typical entry is http://
localhost/wwwroot/.

7 (Optional) Select a language. You must have the International Language Search
Pack installed.

8 Click Submit Changes to begin the indexing process.

The time required to generate the index depends on the number and size of the
selected files in the path.

This interface lets you easily build a very specific index based on the file extension
and path information you enter. In most cases, you do not need to change your
server file structures to accommodate the generation of indices.

In your ColdFusion application, you can populate and search multiple collections,
each of which can focus on a specific group of documents or queries, according to
subject, document type, location, or any other logical grouping. Because searches
can be performed against multiple collections, you have substantial flexibility in
designing your search interface.

Use the Administrator if Use the cfindex tag if

You want to index document files. You want to index ColdFusion query results.

The collection will not be updated
frequently.

Your collection needs to be updated
frequently.

You want to generate the collection
without writing any CFML code.

You need to dynamically populate or update
a collection from a ColdFusion application
page.

You want to generate a one-time
collection.

Your collection needs to be updated by other
people.

278 Chapter 15 Indexing and Searching Data
Using cfindex

You can use a form page an action page similar to the following examples to select a
collection and index it.

To select which collection to index:

1 Open a new file in ColdFusion Studio.

2 Modify the file so that it appears as follows:

<html>
<head>

<title>Select the Collection to Index</title>
</head>

<h2>Specify the index you want to build</h2>

<form method="Post" action="collectionindexaction.cfm">
<p>Enter the collection you want to populate:
<input type="text" name="IndexColl" size="25" maxLength="35"></p>
<p>Enter the location of the files in the collection:
<input type="text" name="IndexDir" size="50" maxLength="100"></p>

<input type="submit" name="submit" value="Index">

</form>

</body>
</html>

3 Save the file as collectionindexform.cfm

To use cfindex to index a collection:

1 Open a new file in ColdFusion Studio.

2 Modify the file so that it appears as follows:

<html>
<head>
<title>Creating Index</title>
</head>
<body>
<h2>Indexing Complete</h2>

<cfindex collection="#Form.IndexColl#"
key="#Form.IndexDir#"
action="refresh"
type="path"
urlpath="#Form.IndexDir#"
extensions=".htm, .html"
recurse="Yes"
language="English">

Creating a Searchable Data Source 279
<cfoutput>
The collection #Form.IndexColl# has been indexed.

</cfoutput>
</body>
</html>

3 Save the file as collectionindexaction.cfm.

4 View collectionindexform.cfm in your browser, enter values, and then click
Index.

Building a search interface
After you create and index a searchable data source, you need to build a search
interface to allow users to access the data source. The cfsearch tag provides users
with a set of operators and modifiers to create sophisticated query expressions. This
section describes how to get a basic search application up and running. Later
sections explore these options in detail.

Using the Verity Wizard in ColdFusion Studio

To quickly create a search application for an existing collection, select File > New in
ColdFusion Studio and select the Verity Wizard in the CFML tab of the New
Document dialog box. The wizard creates a set of application pages based on the
entries you make in the wizard pages.

You can customize the search interface by adding instructional text for users and
applying styles to the form pages.

Basic search operations

The following procedure describes the basic search operations.

To search the collection:

1 Create a file in ColdFusion Studio.

2 Modify the file so that it appears as follows:

<html>
<head>

<title>Select the collection to search</title>
</head>

<body>
<h2>Search</h2>

<form method="Post" action="collectionsearchaction.cfm">
<p>Enter the collection you want to search:
<input type="text" name="collection" size="25" maxlength="35"></p>
<p>Select the type of search:

<input type=radio

name=type

280 Chapter 15 Indexing and Searching Data
value=simple checked> Simple

<input type=radio

name=type
value=explicit> Explicit

<p>Enter a search string:</p>
<input type=text

name=searchstring size=50>

<p><input type=submit
name=search1
value="Search">

<input type=reset
value="Reset">

</form>

</body>
</html>

3 Save the file as collectionsearchform.cfm.

Note
To use cfsearch to search a Verity K2 Server collection, the collection attribute
must be the collection’s unique alias name as defined in the k2server.ini and the
external attribute must be "No" (the default).

To present the results of the search to the user:

1 Create a new file in ColdFusion Studio.

2 Modify the file so that it appears as follows:

<html>
<head>

<title>Search output page</title>
</head>

<body>
<cfsearch name="Search1"

collection="#form.collection#"
form type="#form.type#"
criteria="#form.searchstring#">

<h2>Search Results</h2>

<cfoutput>
#Search1.RecordCount# found out of
#Search1.RecordsSearched# searched.

</cfoutput>

<hr noshade>
<cfoutput query="Search1">

#Search1.title#

</cfoutput>

Creating a Searchable Data Source 281
<hr noshade>
</body>
</html>

3 Save the file as collectionsearchaction.cfm.

4 View the file collectionsearchform.cfm in your browser, enter values in the
form, and then submit it.

Creating summaries

As part of the indexing process, Verity automatically produces a summary of every
document file or every query result set that gets indexed. The default summarization
selects the best sentences, based on internal rules, up to a maximum of 500
characters. Summarization information is returned by default with every cfsearch
operation. For more information on this topic, see the Knowledge Base article
“Verity Custom1, Custom2 and Summary Fields“ (ID# 1081) at
http://www.coldfusion.com/Support/KnowledgeBase/SearchForm.cfm.

The cfsearch tag returns the summary for each found document in the query
variable search_query.Summary. For example, to add a summary for each search
result returned by the collectionsearchaction.cfm page, change the cfoutput query
tag as follows:

<cfoutput query="Search1">
#Search1.title#

#Summary#

</cfoutput>

For information on an advanced summarization technique, see the Knowledge Base
article “Verity: Synchronizing information stored in Verity Collection” (ID# 1116) at
http://www.coldfusion.com/Support/KnowledgeBase/SearchForm.cfm.

cfsearch properties

Each cfsearch query object includes three variables that provide information about
the query:

• RecordCount The total number of records returned by the query.

• CurrentRow The current row of the query being processed by cfoutput.

• RecordsSearched The total number of records in the index that were searched.
If no records were returned in the search, this property returns a null value.

282 Chapter 15 Indexing and Searching Data
Indexing Query Results
The following sections describe the reasons and procedures for indexing the results
of database, LDAP, and pop queries.

Indexing database query results
The main advantage of performing searches against a Verity collection over using
cfquery alone is that the database is indexed in a form that provides faster access.
Use this technique instead of cfquery in the following cases:

• You want to index textual data. You can search Verity collections containing
textual data much more efficiently with cfindex than by searching a database
with cfquery.

• You want to give your users access to data without interacting directly with the
data source itself.

• You want to improve the speed of queries.

• You want your end users to run queries but not update database tables.

Indexing the result set from a ColdFusion query involves an extra step not required
when you index documents. You must code the query and output parameters, and
then point the cfindex tag at the result set from a cfquery, cfldap, or cfpop query.

To index a ColdFusion query:

1 Create a collection on the ColdFusion Administrator Verity Collections page.

2 Execute a query and output the data.

3 Populate the collection using the cfindex tag.

To populate a collection from a cfquery you specify a key attribute, which
corresponds to the primary key of the data source table, and a body attribute, the
column or columns that you want to search for the index. The following extract
shows only the cfquery and cfindex parts of the process.

<!--- Select the entire table --->
<cfquery name="Messages"

datasource="MyMail">
SELECT *

FROM Messages
</cfquery>

<!--- Output the result set --->
<cfoutput query="Messages">

#Message_ID#, #Subject#, #Title#, #MessageText#

</cfoutput>

<!--- Index the result set --->
<cfindex collection="DBIndex"

action="Update"
type="Custom"

Indexing Query Results 283
body="MessageText"
key="Message_ID"
title="Subject"
query="Messages">

This cfindex statement specifies the MessageText column as the information to be
indexed and names the table’s primary key, the Message_ID column, as the key
value. Note that the title attribute names the Subject column. You can use the
title attribute to designate an output parameter.

To index more than one column in a collection, enter a comma-separated list of
column names for values of the body attribute, such as:

body=FirstName,LastName,Company

Indexing cfldap query results
The widespread use of the Lightweight Directory Access Protocol to build searchable
directory structures, both internally and across the Web, gives you opportunities to
add value to the sites you create. You can index contact information or other data
from an LDAP-accessible server and allow users to search it.

When creating an index from an LDAP query, remember the following
considerations:

• Because LDAP structures vary greatly, you must know the server’s directory
schema and the exact name of every LDAP attribute you intend to use in a query.

• The records on an LDAP server can be subject to frequent change. You might
want to re-index the collection before processing a search request.

In the example below, the search criterion is records with a telephone number in the
617 area code. Generally, LDAP servers use the Distinguished Name (dn) attribute as
the unique identifier for each record so that is used as the key value for the index.

<!--- Run the LDAP query --->
<cfldap name="OrgList"

server="myserver"
action="query"
attributes="o, telephonenumber, dn, mail"
scope="onelevel"
filter="(|(O=a*) (O=b*))"
sort="o"
start="c=US">

<!--- Output query result set --->
<cfoutput query="OrgList">

DN: #dn#

O: #o#

TELEPHONENUMBER: #telephonenumber#

MAIL: #mail#

=============================

</cfoutput>

<!--- Index the result set --->

284 Chapter 15 Indexing and Searching Data
<cfindex action="update"
collection="ldap_query"
key="dn"
type="custom"
title="o"
query="OrgList"
body="telephonenumber">

<!--- Search the collection --->
<!--- Use the wildcard * to contain the search string --->
<cfsearch collection="ldap_query"

name="s_ldap"
criteria="*617*">

<!--- Output returned records --->
<cfoutput query="s_ldap">

#Key#, #Title#, #Body#

</cfoutput>

Indexing cfpop query results
The contents of mail servers are generally quite volatile; specifically, the message
number is reset as messages are added and deleted. To avoid mismatches between
the unique message number identifiers on the server and in the Verity collection,
you should re-index the collection before processing a search.

As with the other query types, you need to provide a unique value for the key
attribute and enter the data fields to index in the body attribute.

The following example updates the pop_query collection with the current mail for
user1 and searches and returns the message number and subject line for all
messages containing the word “action”:

<!--- Run POP query --->
<cfpop action="getall"

name="p_messages"
server="mail.company.com"
userName="user1"
password="user1">

<!--- Output POP query result set --->
<cfoutput query="p_messages">

#messagenumber#

#from#

#to#

#subject#

#body#

<hr>
</cfoutput>

<!--- Index result set --->
<cfindex action="update"

collection="pop_query"
key="messagenumber"

Using Query Expressions 285
type="custom"
title="subject"
query="p_messages"
body="body">

<!--- Search messages for the word "action" --->
<cfsearch collection="pop_query"

name="s_messages"
criteria="action">

<!--- Output search result set --->
<cfoutput query="s_messages">

#key#, #title#

</cfoutput>

Using Query Expressions
When you search a Verity collection, you use the cfsearch tag in a ColdFusion
application page. Use the criteria attribute to specify the query expression you
want to pass to the search engine.

You can build two types of query expressions: simple and explicit. A simple query
expression is typically a word or words. An explicit query expression can employ a
number of operators and modifiers to refine the search, and you must invoke all
aspects of the search explicitly. A simple query expression employs operators by
default. You can assemble an explicit query expression programmatically, or you can
pass a simple query expression to the search engine directly from an HTML input
form.

The Verity query language provides many operators and modifiers for composing
queries. You can use the following search techniques to search a Verity collection:

• Word searches

• Proximity searches

• Concept–based searches

• Field searches in which documents are matched based on matching predefined
custom attributes

• Scoring operators

Simple query expressions
Simple queries let end users enter simple, comma-delimited strings and use
wildcard characters. Users can enter multiple words separated by commas, in which
case the comma is treated like a logical OR. If a user omits the commas, the query
expression is treated as a phrase.

Ordinarily, operators are employed in explicit query expressions. Operators are
normally surrounded by angle brackets (< >). However, a simple query expression
can include the AND, OR, and NOT operators without angle brackets.

286 Chapter 15 Indexing and Searching Data
A simple query automatically employs the STEM operator and the MANY modifier.
STEM searches for words that derive from those entered in the query expression, so
entering “find” returns documents that contain “find,” “finding,” “finds,” and so on.
The MANY modifier presents the documents returned in the search as a list based on
a relevancy score.

Explicit query expressions
You can construct explicit queries using a variety of operators, which are described
later in this section. Most operators in an explicit query expression must be
surrounded by angle brackets < >. You can use the AND, OR, and NOT operators
without angle brackets.

Expression syntax
You can use either simple or explicit syntax when stating simple query syntax. The
syntax you use determines whether the search words you enter are stemmed, and
whether the words that are found contribute to relevance-ranked scoring.

Simple syntax

When you use simple syntax, the search engine implicitly interprets single words as if
they were modified by the MANY and STEM operators. By implicitly applying the
MANY operator, the search engine calculates each document’s score based on the
density of the search term in the searched documents. The more frequent is the
occurrence of a word in a document, the higher is the document’s score.

As a result, the search engine ranks documents according to word density as it
searches for the word you specify, as well as words that have the same stem. For
example, “films”, “filmed,” and “filming” are stemmed variations of the word “film.”
To search for documents containing the word “film” and its stem words, you can
enter the word “film” without modification. When documents are ranked by
relevance, they appear in a list with the most relevant documents at the top.

Explicit syntax

When you use explicit syntax, the search engine interprets the search terms you
enter as literals. For example, by entering the word “film” (including quotation
marks) using explicit syntax, the stemmed versions of the word “film”, “films,”
“filmed,” and “filming” are ignored.

The following table shows all operators available for conducting searches of
ColdFusion Verity collections.

Verity Search Operators

< CONTAINS PHRASE

<= ENDS SENTENCE

Using Query Expressions 287
Special characters

The search engine handles a number of characters in particular ways as described in
the following table:

A backslash (\) removes special meaning from whatever character follows it. To enter
a literal backslash in a query, use two in succession; for example:

<FREETEXT>("\"Hello\", said Packard.")
"backslash (\\)"

Composing search expressions
The following rules apply to the composition of search expressions.

Precedence rules

Expressions are read from left to right. The AND operator takes precedence over the
OR operator. However, terms enclosed in parentheses are evaluated first. When the
search engine encounters nested parentheses, it starts with the innermost term.

Prefix and infix notation

You use can using prefix notation or infix notation to define search strings that use
any operator other than an evidence operator. As a result, either of the following
expressions is valid:
• AND (a,b)

This is prefix notation

• a AND b

This is infix notation

= MATCHES STARTS

> NEAR STEM

>= NEAR/N SUBSTRING

Accrue OR WILDCARD

AND PARAGRAPH WORD

Verity Search Operators

Characters Description

, () [These characters end a text token.

= > < ! These characters also end a text token. They are terminated by an
associated end character.

’ @ ‘ < { [! These characters signify the start of a delimited token. They are
terminated by an associated end character.

288 Chapter 15 Indexing and Searching Data
When you use prefix notation, the expression specifies precedence explicitly. The
following example means: Look for documents that contain b and c first, then
documents that contain a:
OR (a, AND (b,c))

When you use infix notation, precedence is implicit in the expression. For example,
the AND operator takes precedence over the OR operator.

Commas in expressions

If an expression includes two or more search terms within parentheses, a comma is
required as a separator between the elements. The following example means: Look
for documents that contain any combination of a and b together.

<OR> (a, b)

Note that in this example, angle brackets are used with the OR operator.

Delimiters in expressions

You use angle brackets (< >), double quotation marks ("), and backslashes (\) to
delimit various elements in a query expression, as described in the following table:

Searching with wildcards
The following table shows the wildcard characters that you can use to search Verity
collections:

Angle brackets Left and right angle brackets are reserved for designating
operators and modifiers. They are optional for the AND, OR, and
NOT operators, but required for all other operators.

Double quotation
marks

You use double quotation marks in expressions to search for a
word that is otherwise reserved as an operator, such as AND, OR,
and NOT.

Backslashes To include a backslash in a search expression, insert two
backslashes for each backslash character you want included in the
search; for example, C:\\CFUSION\\BIN.

Wildcard Description

? Question. Matches any single alphanumeric character.

* Asterisk. Matches zero or more alphanumeric characters. Avoid using
the asterisk as the first character in a search string. Asterisk is ignored
in a set, ([]) or an alternative pattern ({}).

[] Square brackets. Matches any one the characters in the brackets, as in
“sl[iau]m” which locates “slim,” “slam,” and “slum.” Square brackets
indicate an implied OR.

Using Query Expressions 289
Searching for wildcards as literals

To search for a wildcard character in your collection, you need to escape the
character with a backslash (\); for example:

• To match a literal asterisk, you precede the * with two backslashes: "a*"

• To match a question mark or other wildcard character: "Checkers\?"

Searching for special characters as literals
You must precede the following nonalphanumeric characters with a backslash
character (\) in a search string:

• comma (,)

• left and right parentheses ()

• double quotation mark (")

• backslash (\)

• at sign (@)

• left curly brace ({)

• left bracket ([)

• less than sign (<)

• backquote (‘)

In addition to the backslash character, you can use paired backquotes (‘ ‘) to
interpret special characters as literals. For example, to search for the wildcard string
“a{b” you can surround the string with backquotes, as follows:
`a{b`

To search for a wildcard string that includes the literal backquote character (`) you
must use two backquotes together and surround the whole string in backquotes:
`*n``t`

You can use paired backquotes or backslashes to escape special characters. There is
no functional difference between the two. For example, you can query for the term:
<DDA> in the following ways:

\<DDA\> or ‘<DDA>‘

{ } Curly braces. Matches any one of a set of patterns separated by a
comma, as in “hoist{s, ing, ed}”, which locates “hoists,” “hoisting,” and
“hoisted”.

^ Caret. Matches any character not in the set, as in “sl[^ia]m”, which
locates “slum” but not “slim” or “slam.”

- Hyphen. Specifies a range of characters in a set, as in “c[a-r]t”, which
locates every word beginning with “c,” ending with “t,” and containing
any letter from “a” to “r.”

Wildcard Description

290 Chapter 15 Indexing and Searching Data
Operators and modifiers
The power of the cfsearch tag is in the control it provides over the Verity search
engine. The engine offers users a high degree of specificity in setting search
parameters.

Operators

An operator represents logic to be applied to a search element. This logic defines the
qualifications that a document must meet to be retrieved. You can use operators to
refine your search or to influence the results in other ways. For example, you could
construct an HTML form for conducting searches. In the form, a user could perform
a search for a single term: server. You can refine your search by limiting the search
scope in a number of ways. Operators are available for limiting a query to a sentence
or paragraph, and you can search words based on proximity.

Ordinarily, you use operators in explicit searches, as shown here:

"<operator>search_string"

The following operator types are available:

Evidence operators

Evidence operators let you specify a basic word search or an intelligent word search.
A basic word search finds documents that contain only the word or words specified
in the query. An intelligent word search expands the query terms to create an
expanded word list so that the search returns documents that contain variations of
the query terms.

Documents retrieved using evidence operators are not ranked by relevance unless
you use the MANY modifier.

Operator type Purpose

Evidence Specifies basic and intelligent word searches.

Proximity Specifies the relative location of words in a document.

Relational Searches fields in a collection.

Concept Identifies a concept in a document by combining the meanings of
search elements.

Score Manipulates the score returned by a search element. You can set
the score percentage display to as many as four decimal places.

Natural
language

Allows the use of natural language expressions in forming queries.

Using Query Expressions 291
The following tale describes the evidence operators:

Proximity operators

Proximity operators specify the relative location of specific words in the document.
Specified words must be in the same phrase, paragraph, or sentence for a document
to be retrieved. In the case of NEAR and NEAR/N operators, retrieved documents are
ranked by relevance based on the proximity of the specified words. Proximity
operators can be nested; phrases or words can appear within SENTENCE or
PARAGRAPH operators, and SENTENCE operators can appear within PARAGRAPH
operators.

Operator Description

STEM Expands the search to include the word you enter and its variations.
The STEM operator is automatically implied in any simple query. For
example, the explicit query expression:
<STEM>believe

yields matches such as “believe,” “believing,” and “believer”.

WILDCARD Matches wildcard characters included in search strings. Certain
characters automatically indicate a wildcard specification, such as
apostrophe (*) and question mark(?). For example, the query
expression:
spam*

yields matches such as, “spam,” “spammer”, and “spamming”.

WORD Performs a basic word search, selecting documents that include one
or more instances of the specific word you enter. The WORD
operator is automatically implied in any SIMPLE query.

THESAURUS Expands the search to include the word you enter and its synonyms.

SOUNDEX Expands the search to include the word you enter and one or more
words that “sound like,” or whose letter pattern is similar to, the word
specified. Collections do not have sound-alike indexes by default; to
use this feature you must build sound-alike indexes.

TYPO/N Expands the search to include the word you enter plus words that
are similar to the query term. This operator performs “approximate
pattern matching” to identify similar words. The optional N variable in
the operator name expresses the maximum number of errors
between the query term and a matched term, a value called the error
distance. If N is not specified, an error distance of 2 is used.

292 Chapter 15 Indexing and Searching Data
The following table describes the proximity operators:

Relational operators

Relational operators search document fields that you defined in the collection.
Documents containing specified field values are returned. Documents retrieved
using relational operators are not ranked by relevance, and you cannot use the
MANY modifier with relational operators.

Operator Description

NEAR Selects documents containing specified search terms. The closer the
search terms are to one another within a document, the higher the
document’s score. The document with the smallest possible region
containing all search terms always receives the highest score.
Documents whose search terms are not within 1000 words of each
other are not selected.

NEAR/N Selects documents containing two or more search terms within N
number of words of each other, where N is an integer between 1 and
1024. NEAR/1 searches for two words that are next to each other.
The closer the search terms are within a document, the higher the
document’s score.

You can specify multiple search terms using multiple instances of
NEAR/N as long as the value of N is the same:
commute <NEAR/10> bicycle <NEAR/10>
train <NEAR/10>

PARAGRAPH Selects documents that include all of the words you specify within the
same paragraph. To search for three or more words or phrases in a
paragraph, you must use the PARAGRAPH operator between each
word or phrase.
<PARAGRAPH> (mission, goal).

PHRASE Selects documents that include a phrase you specify. A phrase is a
grouping of two or more words that occur in a specific order.
Examples:
mission oak
“mission oak”
mission <PHRASE> oak

SENTENCE Selects documents that include all of the words you specify within the
same sentence. Examples:
jazz <SENTENCE> musician
<SENTENCE> (jazz, musician)

IN Selects documents that contain specified values in one or more
document zones. A document zone represents a region of a
document, such as the document’s summary, date, or body text. The
IN operator can be qualified with the WHEN operator, to search for a
term only within the one or more zones upon which certain conditions
have been placed.

Using Query Expressions 293
You use the following operators for numeric and date comparisons:

The following relational operators compare text and match words and parts of
words:

Operator Description

= Equals

> Greater than

>= Greater than or equal to

< Less than

<= Less than or equal to

Operator Description

CONTAINS Selects documents by matching the word or phrase you specify
with the values stored in a specific document field. Documents are
selected only if the search elements specified appear in the same
sequential and contiguous order in the field value; for example,
“god” matches “God in heaven,” “a god among men,” or “good god”
but not “godliness,” or “gods.”

MATCHES Selects documents by matching the query string with values stored
in a specific document field. Documents are selected only if the
search elements specified match the field value exactly. If a partial
match is found, a document is not selected; for example, “god”
matches a document field containing only “god” and does not
match “gods,” “godliness,” or “a god among men.”

STARTS Selects documents by matching the character string you specify
with the starting characters of the values stored in a specific
document field.

ENDS Selects documents by matching the character string you specify
with the ending characters of the values stored in a specific
document field.

SUBSTRING Selects documents by matching the query string you specify with
any portion of the strings in a specific document field; for example,
“god” matches “godliness,” “a god among men,” “godforsaken,” and
so on.

294 Chapter 15 Indexing and Searching Data
Document fields

You can specify the values for the cfindex attributes TITLE, KEY, URL, and CUSTOM
as document fields for use with relational operators in the criteria attribute.
Document fields are referenced in text comparison operators. They are identified as:

• CF_TITLE

• CF_KEY

• CF_URL

• CF_CUSTOM1

• CF_CUSTOM2

For more information on this topic, see the Knowledge Base article, “Verity: Using
Document Fields To Narrow Down Searches” (ID# 1082) on our Web site at http://
www.coldfusion.com/Support/KnowledgeBase/SearchForm.cfm.

The SUBSTRING operator

You can use the SUBSTRING operator to match a character string with data stored in
a specified data source. In the example described in this section, a data source called
TEST1 contains the table YearPlaceText, which itself contains three columns: Year,
Place, and Text. Year and Place make up the primary key. The following table shows
the TEST1 schema:

The following application page matches records that have 1990 in the TEXT column
and are in the Place Utah. The search is performed against the collection that
contains the TEXT column and then is narrowed further by searching for the string
“Utah” in the CF_TITLE document field. Recall that document fields are defaults
defined in every collection corresponding to the values you define for URL, TITLE,
and KEY in the cfindex tag.

<cfquery name="GetText"
datasource="TEST1">
SELECT Year+Place

AS Identifier, text
FROM YearPlaceText

</cfquery>

<cfindex collection="testcollection"
action="Update"
type="Custom"
title="Identifier"

Year Place Text

1990 Utah Text about Utah 1990

1990 Oregon Text about Oregon 1990

1991 Utah Text about Utah 1991

1991 Oregon Text about Oregon 1991

1992 Utah Text about Utah 1992

Using Query Expressions 295
key="Identifier"
body="TEXT"
query="GetText">

<cfsearch name="GetText_Search"
collection="testcollection"
type="Explicit"
criteria="1990 and CF_TITLE <SUBSTRING> Utah">

<cfoutput>
Record Counts:

#GetText.RecordCount#

#GetText_Search.RecordCount#

</cfoutput>

Query Results --- Should be 5 rows

<cfoutput query="Gettext">

#Identifier#

</cfoutput>

Search Results -- should be 1 row

<cfoutput query="GetText_Search">

#GetText_Search.TITLE#

</cfoutput>

Concept operators

Concept operators combine the meaning of search elements to identify a concept in
a document. Documents retrieved using concept operators are ranked by relevance.
The following table describes each concept operator:

Operator Description

AND Selects documents that contain all the search elements you specify.

OR Selects documents that show evidence of at least one of the search
elements you specify.

ACCRUE Selects documents that include at least one of the search elements
you specify. Documents are ranked based on the number of search
elements found.

ALL Selects documents that contain all of the search elements you specify.
A score of 1.00 is assigned to each retrieved document. ALL and AND
retrieve the same results, but queries using ALL are always assigned a
score of 1.00.

ANY Selects documents that contain at least one of the search elements
you specify. A score of 1.00 is assigned to each retrieved document.
ANY and OR retrieve the same results, but queries using ANY are
always assigned a score of 1.00.

296 Chapter 15 Indexing and Searching Data
Score operators

Score operators govern how the search engine calculates scores for retrieved
documents. The maximum score that a returned search element can have is 1.000.
You can set the score percentage display to as many as four decimal places.

When you use a score operator, the search engine first calculates a separate score for
each search element found in a document, and then performs a mathematical
operation on the individual element scores to arrive at the final score for each
document.

Note that the document’s score is available as a result column. You can use the
SCORE result column to get the relevancy score of any document retrieved. For
example:

<cfoutput>
#Search1.Title#

Document Score=#Search1.SCORE#

</cfoutput>

The following table describes the score operators:

Operator Description

YESNO Forces the score of an element to 1 if the element’s score is
non-zero:
<YESNO>mainframe

If the retrieval result of the search on “mainframe” is 0.75, the
YESNO operator forces the result to 1. You can use YESNO to
avoid relevance ranking.

PRODUCT Multiplies the scores for the search elements in each document
matching a query:
<PRODUCT>(computers, laptops)

Takes the product of the resulting scores.

SUM Adds together the scores for the search element in each document
matching a query, up to a maximum value of 1:
<SUM>(computers, laptops)

Takes the sum of the resulting scores.

COMPLEMENT Calculates scores for documents matching a query by taking the
complement (subtracting from 1) of the scores for the query's
search elements. The new score is 1 minus the search element's
original score.
<COMPLEMENT>computers

If the search element's original score is .785, the COMPLEMENT
operator recalculates the score as .215.

Using Query Expressions 297
Modifiers
You combine modifiers with operators to change the standard behavior of an
operator in some way. For example, you can use the CASE modifier with an operator
to specify that you want to match the case of the search word.

The following table describes the available modifiers.

Modifier Description

CASE Specifies a case-sensitive search. Normally, Verity searches are
case-insensitive for search text entered in all uppercase or all
lowercase, and case-sensitive for mixed-case search strings.
The expression:
<CASE>J[JAVA, java]

Searches for “JAVA” and “Java.”

MANY Counts the density of words, stemmed variations, or phrases in a
document and produces a relevance-ranked score for retrieved
documents. Use with the following operators:
• WORD
• WILDCARD

• STEM
• PHRASE
• SENTENCE

• PARAGRAPH
Here is an example:
<PARAGRAPH><MANY>javascript <AND> vbscript

You cannot use the MANY modifier with the following:

• AND
• OR
• ACCRUE

• Relational operators

NOT Use to exclude documents that contain the specified word or phrase.
Use only with the AND and OR operators.

Here is an example:
Java <AND> programming <NOT> coffee

ORDER Use to specify that the search elements must occur in the same order
in which they are specified in the query. Use with the following
operators:
• PARAGRAPH

• SENTENCE
• NEAR/N
Place the ORDER modifier before any operator, as follows:
<ORDER><PARAGRAPH>("server", "Java")

298 Chapter 15 Indexing and Searching Data
Managing Collections
As with any data source, the maintenance requirements of a Verity collection are
dictated by the number, frequency, and type of changes that occur in the records.
You can run maintenance routines directly from either the cfcollection or cfindex
tags or via the Administrator Verity Collections page. For more information on this
topic, see the Knowledge Base article “Maintaining Collections” (ID# 1080) at http://
www.coldfusion.com/Support/KnowledgeBase/SearchForm.cfm.

The easiest way to perform collection management tasks is to create a ColdFusion
page that runs the operations, and then add the task on the Administrator Scheduler
page. The page presents a wide range of scheduling options.

Maintenance options
Choose an option based on the following function descriptions:

• Repair Runs internal Verity routines to fix corrupted records. If you suspect a
collection is corrupted, it is probably safest to repopulate it.

• Optimize Packs the indexed data for better performance. You can use this
procedure, which is similar to database optimization, as part of routine
maintenance.

You should not use the Optimize action in a cfindex tag except to maintain
legacy code. The cfcollection tag is recommended instead. For more
information on this command, see the Knowledge Base article “How To Optimize
Your Verity Collection” (ID# 416) at http://www.coldfusion.com/Support/
KnowledgeBase/SearchForm.cfm.

• Purge Removes all data marked for deletion from a collection.

• Delete as the cfindex action attribute Marks for deletion the specified key
attribute value, or comma-separated values, from the collection. Use Purge to
remove these items.

• Delete on the Administrator Verity Collections page or in cfcollection Deletes
the entire collection.

• Update Repopulates the collection with changed records and new records and
adds a key if one is not part of the collection. This operation does not delete
records that have been deleted from the data source. To update a collection from
the Administrator Verity main page, select a collection on the list, click Index, and
then click Update on the index page.

• Refresh (cfindex action attribute only) Deletes all data and repopulates the
collection.

Securing a collection
Scenarios for restricting access to a Verity collection include:

• The ColdFusion Administrator might need to specify developer access to
collections.

• A public site might need to limit user access to collections.

Managing Collections 299
To restrict access to a collection, follow these steps:

1 In the ColdFusion Administrator, click the Security tab and select Advanced
Security > Security Configuration.

2 Select the Use Advanced Server Security box.

3 Click the Submit Changes button.

4 Click the Security Contexts button.

5 Enter a name for the secured collection and click Add Security Context.

6 (Optional) Enter a description for the secured collection.

7 Select Collection on the Enable Security for Resource Types list.

8 Click Add.

You can then develop an appropriate authentication interface to allow access to the
secured collection.

300 Chapter 15 Indexing and Searching Data

Chapter 16

Sending and Receiving E-mail
You can add interactive mail features to your ColdFusion applications, providing a
complete two-way interface to mail servers via the cfmail tag and the cfpop tag. The
boom in Internet mail services makes ColdFusion’s enhanced e-mail capability a
vital link to your users.

Contents

• Using ColdFusion with Mail Servers.. 302

• Sending E-mail Messages ... 302

• Sample Uses of cfmail ... 304

• Customizing E-mail for Multiple Recipients... 306

• Advanced Sending Options .. 308

• Receiving E-mail Messages... 309

• Handling POP Mail.. 310

302 Chapter 16 Sending and Receiving E-mail
Using ColdFusion with Mail Servers
Adding e-mail to your ColdFusion applications lets you respond automatically to
user requests. You can use e-mail in your ColdFusion applications in many different
ways. These are just a few examples:

• Trigger e-mail messages based on users’ requests or orders.

• Allow users to request and receive additional information or documents through
e-mail.

• Confirm customer information based on order entries or updates.

• Send invoices or reminders, using information pulled from database queries.

ColdFusion offers several ways to integrate e-mail into your applications. For
sending e-mail, you generally use the Simple Mail Transfer Protocol (SMTP). For
receiving mail, you use the Post Office Protocol (POP) to retrieve e-mail from the
mail server. To use e-mail messaging in your ColdFusion applications, you must
have access to an SMTP server and/or a valid POP account.

In your ColdFusion application pages, you use the cfmail and cfpop tags to send
and receive mail respectively. The following sections describe ColdFusion e-mail
features and offer examples of these tags.

Sending E-mail Messages
Before you set up ColdFusion to send e-mail messages, you must have access to an
SMTP e-mail server. Also, before you run application pages that refer to the e-mail
server, you might want to configure the ColdFusion Administrator to use the SMTP
server so that you do not have to hard-code it in your application.

To configure ColdFusion for e-mail:

1 Open the Mail/Mail Logging page of the ColdFusion Administrator Server tab.

2 In the Mail Server box, enter the name or IP address of the SMTP mail server you
want ColdFusion to use.

3 Select the Verify Mail Server Connection check box to make sure ColdFusion can
access your mail server.

4 Leave the Server Port and Connection Timeout settings at their default values,
unless you need different settings.

5 Click Submit Changes to save the settings.

The page displays a message indicating success or failure at connecting to the server.

For more information on the Administrator’s mail settings, see Advanced ColdFusion
Administration.

Sending E-mail Messages 303
Sending SMTP mail with cfmail
The cfmail tag provides support for sending SMTP e-mail from within ColdFusion
applications. The cfmail tag is similar to the cfoutput tag, except that cfmail
outputs the generated text as SMTP mail messages rather than to a page. The cfmail
tag supports all the attributes and commands that you use with cfoutput, including
query.

To send a simple e-mail message:

1 Create a new file in ColdFusion Studio.

2 Modify the file so that it appears as follows:

<html>
<head>

<title>Sending a simple e-mail</title>
</head>

<body>
<h1>Sample e-mail</h1>
<cfmail

from="Sender@Company.com"
to="#URL.email#"
subject="Sample e-mail"

>
This is a sample e-mail to show basic e-mail capability.

</cfmail>

The e-mail was sent.

</body>
</html>

3 Save the file as sendmail.cfm in myapps under the Web root directory.

4 Open your browser and enter the URL that contains the file; for example:

http://localhost/myapps/sendmail.cfm?email=myname@mycompany.com

(Replace myname@mycompany.com with your e-mail address.)

The page sends the e-mail to you, through your SMTP server.

304 Chapter 16 Sending and Receiving E-mail
Sample Uses of cfmail
An application page with the cfmail tag dynamically generates e-mail messages
based on the tag’s settings. Some of the tasks you can accomplish with cfmail
include the following:

• Sending a mail message whose recipient and contents are determined by data
the user enters in an HTML form

• Using a query to send a mail message to a database-driven list of recipients

• Using a query to send a customized mail message, such as a billing statement to
alist of recipients that is dynamically populated from a database.

• Sending a MIME file attachment along with a mail message

Sending form-based e-mail
In the following example, the contents of a customer inquiry form submittal are
forwarded to the marketing department. Note that the same application page could
also insert the customer inquiry into the database.

< cfmail
from="#Form.EMailAddress#"
to="marketing@MyCompany.com"
subject="Customer Inquiry">

A customer inquiry was posted to our Web site:

Name: #Form.FirstName# #Form.LastName#
Subject: #Form.Subject#

#Form.InquiryText#

</cfmail>

Sending query-based e-mail
In the following example, a query (ProductRequests) is run to retrieve a list of the
customers who have inquired about a product over the last seven days. This list is
then sent, with an appropriate header and footer, to the marketing department:

< cfmail
query="ProductRequests"
from="webmaster@MyCompany.com"
to="marketing@MyCompany.com"
subject="Widget status report">

Here is a list of people who have inquired about
MyCompany Widgets over the last seven days:

<cfoutput>

Sample Uses of cfmail 305
#ProductRequests.FirstName# #ProductRequests.LastName#
(#ProductRequests.Company#) -
#ProductRequests.EMailAddress#&##013;

</cfoutput>

Regards,
The WebMaster
webmaster@MyCompany.com

</cfmail>

Note the use of the cfoutput tag to present a dynamic list embedded within a
normal cfmail message. The text within the cfoutput is repeated for each row in the
ProductRequests query, while the text above and below it serve as the header and
footer, respectively, for the mail message. The &##013; in the cfoutput block forces a
carriage return between output records.

Sending e-mail to multiple recipients
In the following example, a query (BetaTesters) retrieves a list of people who are beta
testing ColdFusion. This query is then used to send a notification to each of these
testers that a new version of the beta release is available:

<cfmail query="BetaTesters"
from="beta@MyCompany.com"
to="#TesterEMail#"
subject="Widget Beta Four Available">

To all Widget beta testers:

Widget Beta Four is now available
for downloading from the MyCompany site.
The URL for the download is:

http://beta.mycompany.com

Regards,
Widget Technical Support
beta@MyCompany.com

</cfmail>

Note that in this example, the contents of the cfmail tag body are not dynamic, that
is, the tag does not use any # delimited dynamic parameters. What is dynamic is the
list of e-mail addresses to which the message is sent. Note the use of the TesterEMail
column from the BetaTesters query in the to attribute.

306 Chapter 16 Sending and Receiving E-mail
Customizing E-mail for Multiple Recipients
In the following example, a query (GetCustomers) is run to retrieve the contact
information for a list of customers. This query is then used to send an e-mail to each
customer asking the person to verify that the contact information is still valid:

<cfmail query="GetCustomers"
from="service@MyCompany.com"
to="#EMail#"
subject="Contact Info Verification">

Dear #FirstName# -

We’d like to verify that our customer
database has the most up-to-date contact
information for your firm. Our current
information is as follows:

Company Name: #Company#
Contact: #FirstName# #LastName#

Address:
#Address1#
#Address2#
#City#, #State# #Zip#

Phone: #Phone#
Fax: #Fax#
Home Page: #HomePageURL#

Please let us know if any of the above
information has changed, or if we need to
get in touch with someone else in your
organization regarding this request.

Thanks,
Customer Service
service@MyCompany.com

</cfmail>

Note that in the to attribute of cfmail, the #Email# query column causes one
message to be sent to the address listed in each row of the query, and that the mail
body therefore does not use a cfoutput tag. Also note the use of the other query
columns (FirstName, LastName, and so on) within the cfmail section to customize
the contents of the message for each recipient.

Customizing E-mail for Multiple Recipients 307
Attaching a MIME file
You use the cfmailparam tag to attach a file or add a header to a mail message. In the
following example, a MIME-encoded file is sent along with an e-mail message:
<cfmail from="abeecho@MyCompany.com"

to="bobm@supercomputer.com"
subject="File you requested"
>

Dear Bob,

Here is a copy of the file you requested.

Regards,
A. Beech

<cfmailparam file="c:\photos\asdl_photo.jpg">

</cfmail>

308 Chapter 16 Sending and Receiving E-mail
Advanced Sending Options
The ColdFusion implementation of SMTP mail uses a spooled architecture. When a
cfmail tag is processed in an application page, the messages that are generated are
not sent immediately. Instead, they are spooled to disk and processed in the
background. This architecture has two distinct advantages:

• End users of your application are not required to wait for SMTP processing to
complete before a page returns to them. This design is especially useful when a
user action causes more than a handful of messages to be sent.

• Messages sent using cfmail are delivered reliably, even in the presence of
unanticipated events like power outages or server crashes.

You can set how frequently ColdFusion Server checks for spooled mail on messages
on the Mail/Mail Logging page of the ColdFusion Administrator Server tab. (The
default interval is 60 seconds.) If ColdFusion is extremely busy or has a large existing
queue of messages, however, delivery can occur some time after the spool interval.

Sending mail as HTML
Most newer Internet mail applications are capable of reading and interpreting
HTML code in a mail message. The cfmail tag lets you specify the message type as
HTML. The type="HTML" attribute (the only valid value; the default is plain text)
informs the receiving e-mail client that the message has embedded HTML tags that
need to be processed. This feature is useful only when you are sending messages to
mail clients that understand HTML. Also, you must escape any pound signs in the
HTML, such as those used to specify colors, by using two # characters; for example
bgcolor="##C5D9E5".

Error logging and undelivered messages
All errors that occur during the processing of SMTP messages are logged to the file
mail.log in the ColdFusion log directory. The log entries contain the date and time of
the error as well as diagnostic information on why the error occurred.

All messages not delivered because of an error are written to the
\CFusion\Mail\UnDelivr directory on Windows systems and /opt/coldfusion/mail/
undelivr on UNIX systems. The error log entry corresponding to the undelivered
message contains the name of the file written to the UnDelivr directory.

For more information about the mail logging settings in the ColdFusion
Administrator, see Advanced ColdFusion Administration.

Receiving E-mail Messages 309
Receiving E-mail Messages
the Post Office Protocol tag, cfpop, expands your ability to add Internet mail client
features and e-mail consolidation to applications. While a conventional mail client
provides an adequate interface for personal mail, there are many cases in which an
alternative interface to some mailboxes is desirable. cfpop is a tool to develop
targeted mail clients to suit the specific needs of a wide range of applications.

Use cfpop in applications when you want to receive e-mail. Here are two instances
in which implementing POP mail makes sense:

• If your site has generic mailboxes that are read by more than one person
(sales@yourcompany.com), it can be more efficient to construct a ColdFusion
mail front end to supplement individual user mail clients.

• In many applications, you can automate the processing of mail when the mail is
formatted to serve a particular purpose; for example, when subscribing to a list
server.

For more information on cfpop syntax and variables, see the CFML Reference.

Using cfpop
Use the followig steps to add POP mail to your application

To implement the cfpop tag in your ColdFusion application:

1 Choose which mail boxes you want to access within your ColdFusion
application.

2 Determine what mail message components you must process: message header,
message body, attachments, and so on.

3 Decide whether you must store the retrieved messages in a database.

4 Decide whether you must delete messages from the POP server after you retrieve
them.

5 Incorporate the cfpop tag in your application and create a user interface for
accessing a mailbox.

6 Build an application page to handle the output. Retrieved messages can include
ASCII characters that do not display properly in the browser.

You use the cfoutput tag with the HTMLCodeFormat and HTMLEditFormat
functions to control output to the browser. These functions convert characters
with special meanings in HTML, such as <, >, and &, into HTML escaped
characters, such as <, >, and &. The HTMLCodeFormat tag also surrounds
the text in a pre tag block. Note the use of these functions in the examples in this
chapter.

310 Chapter 16 Sending and Receiving E-mail
cfpop query variables
Two variables are returned for each cfpop query that provide record number
information:

• RecordCount The total number of records returned by the query.

• CurrentRow The current row of the query being processed by cfoutput in a
query-driven loop.

You can reference these properties in a cfoutput tag by prefixing the query variable
with the query name in the name attribute of cfpop:

<cfoutput>
This operation returned #Sample.RecordCount# messages.
</cfoutput>

Handling POP Mail
This section gives an example of each of the following usages:

• Retrieving only message headers

• Retrieving a message body

• Retrieving attachments

• Deleting messages

Retrieving only message headers
The header includes the following information. When you use cfpop to get the
header or the entire message, ColdFusion returns the values of each these fields in a
query column, with one record per retrieved message:

• date

• from

• messageNumber

• replyTo

• subject

• cc

• to

To retrieve only the message header:

1 Create a new file in ColdFusion Studio.

2 Modify the file so that it appears as follows:

<html>
<head>
<title>POP Mail Message Header Example</title>
</head>

<body>

Handling POP Mail 311
<h2>This example retrieves message header information:</h2>

<cfpop server="mail.company.com"
username=#myusername#
password=#mypassword#
action="GetHeaderOnly"
name="Sample">

<cfoutput query="Sample">
MessageNumber: #HTMLEditFormat(Sample.messageNumber)#

To: #HTMLEditFormat(Sample.to)#

From: #HTMLEditFormat(Sample.from)#

Subject: #HTMLEditFormat(Sample.subject)#

Date: #HTMLEditFormat(Sample.date)#

 Cc: #HTMLEditFormat(Sample.cc)#

ReplyTo: #HTMLEditFormat(Sample.replyTo)#

</cfoutput>

</body>
</html>

3 Change the following line so that it refers to a valid POP mail server, as well as a
valid user name and password:

<cfpop server="mail.company.com"
username=#username#
password=#password#

4 Save the file as hdronly.cfm in myapps under the Web root directory and view it
in the ColdFusion Studio Browse tab or your Web browser.

This code retrieves the message headers and stores them in a cfpop query result set
called Sample.

The ColdFusion function HTMLEditFormat replaces characters that have meaning to
HTML, such as the < and > signs that can surround detailed e-mail address
information, with escaped characters such as < and >.

In addition, you can process the date returned by cfpop with ParseDateTime, which
accepts an argument for converting POP date/time objects into a CFML date-time
object.

For information on these ColdFusion functions, see the CFML Reference.

You can reference any of these columns in a cfoutput tag, as the following example
shows.

<cfoutput>
#ParseDateTime(queryname.date, "POP")#
#HTMLCodeFormat(queryname.from)#
#HTMLCodeFormat(queryname.messageNumber)#
</cfoutput>

312 Chapter 16 Sending and Receiving E-mail
Retrieving an entire message
When you use the cfpop tag with action="GetAll", ColdFusion returns the same
columns as with getheaderonly, plus two additional columns, body and header.

To retrieve an entire message:

1 Create a new file in ColdFusion Studio.

2 Modify the file so that it appears as follows:

<html>
<head>
<title>POP Mail Message Body Example</title>
</head>

<body>
<h2>This example adds retrieval of the message body:</h2>

<cfpop server="mail.company.com"
username=#myusername#
password=#mypassword#
action="GetAll"
name="Sample">

<cfoutput query="Sample">
MessageNumber: #HTMLEditFormat(Sample.messageNumber)#

To: #Sample.to#

From: #HTMLEditFormat(Sample.from)#

Subject: #HTMLEditFormat(Sample.subject)#

Date: #HTMLEditFormat(Sample.date)#

Cc: #HTMLEditFormat(Sample.cc)#

ReplyTo: #HTMLEditFormat(Sample.replyTo)#

Body:

#Sample.body#

Header:

#HTMLCodeFormat(Sample.header)#

<hr>
</cfoutput>

</body>
</html>

3 Change the following line so that it refers to a valid POP mail server, as well as to a
valid user name and password:

<cfpop server="mail.company.com"
username=#username#
password=#password#

4 Save the file as hdrbody.cfm in myapps under the Web root directory and view it
in the ColdFusion Studio Browse tab or your Web browser.

Handling POP Mail 313
Note that this example does not use a CFML function to encode the body contents.
As a result, the browser displays the formatted message as you would normally see it
in a mail program that supports HTML messages.

Retrieving attachments with messages
When you use the cfpop tag with action="getAll", and use the attachmentpath
attribute to specify the directory in which to store attachements, ColdFusion gets
any attachment files from the POP server and puts them in the specified directory. It
also returns two additional columns:

• attachments Contains a tab-separated list of all attachment names.

• attachmentfiles Contains a tab-separated list of the locations of the
attachment files. Use the cffile tag to delete these temporary files.

You must make sure that the attachmentpath directory exists before you use the
cfpop tag to get attachments. ColdFusion generates an error if it tries to write an
attachment file to a nonexistent directory.

Not all messages have attachments. If a message has no attachments, attachments
and attachmentfiles are empty strings.

To retrieve all parts of a message, including attachments:

1 Create a new file in ColdFusion Studio.

2 Modify the file so that it appears as follows:

<html>
<head>
<title>POP Mail Message Attachment Example</title>
</head>

<body>
<h2>This example retrieves message header,
body, and all attachments:</h2>

<cfpop server="mail.company.com"
username=#username#
password=#password#
action="GetAll"
attachmentpath="c:\temp\attachments"
name="Sample">

<cfoutput query="Sample">
MessageNumber: #HTMLEditFormat(Sample.MessageNumber)#

To: #HTMLEditFormat(Sample.to)#

From: #HTMLEditFormat(Sample.from)#

Subject: #HTMLEditFormat(Sample.subject)#

Date: #HTMLEditFormat(Sample.date)#

Cc: #HTMLEditFormat(Sample.cc)#

ReplyTo: #HTMLEditFormat(Sample.ReplyTo)#

Attachments: #HTMLEditFormat(Sample.Attachments)#

Attachment Files: #HTMLEditFormat(Sample.AttachmentFiles)#

314 Chapter 16 Sending and Receiving E-mail

Body:

#Sample.body#

Header:

HTMLCodeFormat(Sample.header)#

<hr>

</cfoutput>

</body>
</html>

3 Change the following line so that it refers to a valid POP mail server, as well as to a
valid user name and password:

<cfpop server="mail.company.com"
username=#username#
password=#password#

4 Save the file as hdrbody.cfm in myapps under the Web root directory and view it
in the ColdFusion Studio Browse tab or your Web browser.

Note
To avoid duplicate filenames when saving attachments, set the
generateUniqueFilenames attribute of cfpop to Yes.

Deleting messages
By default, retrieved messages are not deleted from the POP mail server. If you want
to delete retrieved messages, you must set the action attribute to Delete. You must
also specify use the messagenumber attribute to specify the numbers of the messages
to delete.

Using cfpop to delete a message permanently removes it from the server. If the
messagenumber does not correspond to a message on the server, ColdFusion
generates an error.

Note
Message numbers are reassigned at the end of every POP mail server
communication that contains a delete action. For example, if you retrieve four
messages from a POP mail server, the message numbers returned are 1,2,3,4. If you
then delete messages 1 and 2 with a single cfpop tag, messages 3 and 4 are assigned
message numbers 1 and 2, respectively.

Handling POP Mail 315
To delete messages:

1 Create a new file in ColdFusion Studio.

2 Modify the file so that it appears as follows:

<html>
<head>
<title>POP Mail Message Delete Example</title>
</head>

<body>
<h2>This example deletes messages:</h2>

<cfpop server="mail.company.com"
username=#username#
password=#password#
action="Delete"
messagenumber="1,2,3">

</body>
</html>

3 Change the following line so that it refers to a valid POP mail server, as well as to a
valid user name and password:

<cfpop server="mail.company.com"
username=#username#
password=#password#

4 Save the file as hdrbody.cfm in myapps under the Web root directory.

Caution
When you view this page in your browser or the ColdFusion Studio Browse tab, it
immediately deletes the messages from your POP server.

316 Chapter 16 Sending and Receiving E-mail

Chapter 17

Managing Files on the Server
The cffile, cfdirectory, and cfcontent tags handle browser/server file
management tasks. To perform server-to-server operations, use the CFFTP tag,
described in “Performing File Operations with cfftp” on page 341.

Contents

• Using cffile ... 318

• Uploading Files.. 319

• Setting File and Directory Attributes ... 323

• Evaluating the Results of a File Upload ... 324

• Moving, Renaming, Copying, and Deleting Server Files 326

• Reading, Writing, and Appending to a Text File.. 327

• Performing Directory Operations .. 329

318 Chapter 17 Managing Files on the Server
Using cffile
The cffile tag gives you the ability to work with files on your server in a number of
ways:

• Uploading files from a client to the Web server using an HTML form

• Moving, renaming, copying, or deleting files on the server

• Reading, writing, or appending to text files on the server

You use the action attribute to specify any of the following file actions: upload, move,
rename, copy, delete, read, readBinary, write, and append. The required attributes
depend on the action specified. For example, if action="write", ColdFusion
expects the attributes associated with writing a text file.

Note
Consider the security and logical structure of directories on the server before
allowing users access to them. You can disable the cffile tag on the Tag Restrictions
page of the ColdFusion Administrator Security tab. Also, to access files that are not
located on the local ColdFusion Server system, ColdFusion services must run using
an account with permission to access the remote files and directories.

Uploading Files 319
Uploading Files
File uploading requires that you create two files:

• An HTML form to enter file upload information

• An action page containing the file upload code

To create an HTML file to specify file upload information:

1 Create a new file in ColdFusion Studio.

2 Modify the file so that it appears as follows:

<html>
<head>

<title>Specify File to Upload</title>
</head>

<body>
<h2>Specify File to Upload</h2>
<form action="uploadfileaction.cfm"

enctype="multipart/form-data"
method="post">

<p>Enter the complete path and filename of the file to upload:
<input type="file"

name="FiletoUpload"
size="45">

</p>
<input type="submit"

value"Upload">
</form>
</body>
</html>

3 Save the file as uploadfileform.cfm in myapps under the Web root directory.

Reviewing the code

The following table describes the code and its function:

Code Description

<form action="uploadfileaction.cfm"
enctype="multipart/form-data"
method="post">

Create a form that contains file selection
fields for upload by the user. The enctype
attribute value tells the server that the form
submission contains an uploaded file

<input type="file"
name="FiletoUpload"
size="45">

Allow the user to input a field. The file type
instructs the browser to prepare to read and
transmit a file from the user’s system to your
server and automatically includes a Browse
button to allow the user to look for the file
instead of entering the entire path and
filename.

320 Chapter 17 Managing Files on the Server
The user can enter a file path or browse the system and pick a file to send.

To create an action page to upload the file:

1 Create a new file in ColdFusion Studio.

2 Modify the file so that it appears as follows:

<html>
<head>

<title>Upload File</title>
</head>

<body>
<h2>Upload File</h2>

<cffile action="upload"
destination="c:\temp"
nameConflict="overwrite"
fileField="Form.FiletoUpload">

<cfoutput>
You uploaded the file #cffile.ClientFileName#.#cffile.ClientFileExt#

successfully to
#cffile.ServerDirectory#\#cffile.ServerFileName#.#cffile.

ServerFileExt#.
</cfoutput>

</body>
</html>

3 Change the following line to point to an appropriate location on your server:

destination="c:\temp"

4 Save the file as uploadfileaction.cfm in myapps under the Web root directory.

5 View uploadfileform.cfm in your browser, enter values and submit the form.

The file you specified is uploaded.

Uploading Files 321
Reviewing the code

The following table describes the code and its function:

Note
This example performs no error checking and does not incorporate any security
measures. Before deploying an application that performs file uploads, be sure to
incorporate both error handling and security.

Resolving conflicting filenames
When you save a file to the server, there is a risk that another file might already exist
with the same name. In this case, there are a number of actions that you can take
using the nameConflict attribute. For example, you can specify the parameter
nameConflict="makeunique" in the cffile tag to create a unique filename while
keeping the file extension the same. The unique name might not resemble the
attempted name.

Controlling the type of file uploaded
For some applications, you might want to restrict the type of file that is uploaded. For
example, you might not want to accept graphic files in a document library.

You use the accept attribute to restrict the type of file that you allow in an upload.
When an accept qualifier is present, the uploaded file’s MIME content type must
match the criteria specified or an error occurs. The accept attribute takes a
comma-separated list of MIME data names, optionally with wildcards.

A file’s MIME type is determined by the browser. Common types, like image/gif and
text/plain, are registered in your browser.

Code Description

<cffile action="upload" Prepare to upload a file to the server.

destination="c:\temp" Specify the destination of the file.

nameConflict="overwrite" If the file already exists, overwrite it.

fileField="Form.FiletoUpload"> Specify the name of the file to upload.
Note that you do not enclose the variable
in pound signs.

You uploaded the file
#cffile.ClientFileName#.#cffile.
ClientFileExt# successfully to
#cffile.ServerDirectory#\#cffile.
ServerFileName#.#cffile.ServerFileExt#.

Inform the user of the file that was
uploaded and its destination. For
information on cffile scope variables, see
“Evaluating the Results of a File Upload”
on page 324.

322 Chapter 17 Managing Files on the Server
Note
Not all browsers support MIME type associations.

Example: Restricting file types

This cffile specification saves an image file only if it is in the GIF format:

<cffile action="Upload"
fileField="Form.FiletoUpload"
destination="c:\uploads\MyImage.GIF"
nameConflict="Overwrite"
accept="image/gif">

This cffile specification saves an image file only if it is in GIF or JPEG format:

<cffile action="Upload"
fileField="Form.FiletoUpload"
destination="c:\uploads\MyImage.GIF"
nameConflict="Overwrite"
accept="image/gif, image/jpeg">

This cffile specification saves any image file, regardless of the format:

<cffile action="Upload"
fileField="Form.FiletoUpload"
destination="c:\uploads\MyImage.GIF"
nameConflict="Overwrite"
accept="image/*">

Note
ColdFusion saves any uploaded file if you omit the accept attribute, leave it empty,
or specify "*/*".

Setting File and Directory Attributes 323
Setting File and Directory Attributes
In Windows, you specify file attributes using the cffile attributes attribute. In
UNIX, you specify file and directory permissions using the cffile and cfdirectory
mode attribute.

Windows
In Windows, you can set the following file attributes:

• ReadOnly

• Temporary

• Archive

• Hidden

• System

• Normal

To specify several attributes, use a comma-separated list, such as
attributes="ReadOnly,Archive". If you do not use attributes, the file’s existing
attributes are maintained. If you specify any other attributes with Normal, the
additional attribute overrides the Normal setting.

Example: Setting file attributes

This example sets the archive bit for the uploaded file:

<cffile action="Copy"
source="c:\files\upload\keymemo.doc"
destination="c:\files\backup\"
attributes="Archive">

Note
Make sure you include the trailing slash (\) when you specify the destination
directory. Otherwise, ColdFusion treats the last element in the pathname as a
filename.

UNIX
In UNIX, you can set permissions on files and directories for owner, group, and
other. Values for the mode attribute correspond to octal values for the UNIX chmod
command:

• 4 = read

• 2 = write

• 1 = execute

324 Chapter 17 Managing Files on the Server
You enter permissions values in the mode attribute for each type of user: owner,
group, and other in that order. For example, use the following code to assign read
permissions for everyone:

mode=444

To give a file or directory owner read/write/execute permissions and read only
permissions for everyone else:

mode=744

Evaluating the Results of a File Upload
After a file upload is completed, you can retrieve status information using file upload
variables. This status information includes a wide range of data about the file, such
as the file’s name and the directory where it was saved.

Although you can use either the File or cffile prefix, for file uploaded status variables,
cffile is preferred; for example, cffile.ClientDirectory. (The File prefix is retained for
backward compatibility.) You can use the file status variables anywhere that you use
ColdFusion variables.

The following table describes the file status variables that are available after an
upload:

Variable Description

attemptedServerFile Initial name ColdFusion used attempting to save a file, for
example, myfile.txt. See “Resolving conflicting filenames”
on page 321.

clientDirectory Directory on the client’s system from which the file was
uploaded.

clientFile Full name of the source file on the client’s system with the
file extension; for example, myfile.txt.

clientFileName Name of the source file on the client’s system without an
extension; for example, myfile.

clientFileExt Extension of the source file on the client’s system without a
period; for example, txt not .txt.

contentSubType MIME content subtype of the saved file, such as gif for
image/gif.

contentType MIME content type of the saved file, such as image for
image/gif.

dateLastAccessed Date that the uploaded file was last accessed.

fileExisted Indicates (Yes or No) whether the file already existed with
the same path.

fileSize Size of the uploaded file.

Evaluating the Results of a File Upload 325
Note
File status variables are read-only. They are set to the results of the most recent
cffile operation. If two cffile tags execute, the results of the first are overwritten
by the subsequent cffile operation.

fileWasAppended Indicates (Yes or No) whether ColdFusion appended the
uploaded file to an existing file.

fileWasOverwritten Indicates (Yes or No) whether ColdFusion overwrote a file.

fileWasRenamed Indicates (Yes or No) whether the uploaded file was
renamed to avoid a name conflict.

fileWasSaved Indicates (Yes or No) whether ColdFusion saved a file.

oldFileSize Size of a file that was overwritten in the file upload
operation. Empty if no file was overwritten.

serverDirectory Directory where the file was saved on the server.

serveFile Full name of the file saved on the server with the file
extension; for example, myfile.txt.

serverFileName Name of the file saved on the server without an extension;
for example, myfile.

serverFileExt Extension of the file saved on the server without a period; for
example, txt, not .txt.

timeCreated Date and time the uploaded file was created.

timeLastModified Date and time of the last modification to the uploaded file.

Variable Description

326 Chapter 17 Managing Files on the Server
Moving, Renaming, Copying, and Deleting Server Files
With cffile, you can create application pages to manage files on your Web server.
You can use the tag to move files from one directory to another, rename files, copy a
file, or delete a file.

The examples in the following table show static values for many of the attributes.
However, the value of all or part of any attribute in a cffile tag can be a dynamic
parameter. This makes cffile a very powerful tool.

Action Example code

Move a file <cffile action="Move"
source="c:\files\upload\KeyMemo.doc"
destination="c:\files\memo\">

Rename a file <cffile action="Rename"
source="c:\files\memo\KeyMemo.doc"
destination="c:\files\memo\OldMemo.doc">

Copy a file <cffile action="Copy"
source="c:\files\upload\KeyMemo.doc"
destination="c:\files\backup\">

Delete a file <cffile action="Delete"
file="c:\files\upload\oldfile.txt">

Reading, Writing, and Appending to a Text File 327
Reading, Writing, and Appending to a Text File
In addition to managing files on the server, you can use cffile to read, create, and
modify text files. As a result, you can do the following things:

• Create log files. (You can also use cflog to create and write to log files.)

• Generate static HTML documents.

• Use text files to store information that can be brought into Web pages.

Reading a text file
You can use cffile to read an existing text file. The file is read into a local variable
that you can use anywhere in the application page. For example, you could read a
text file and then insert its contents into a database. Or you could read a text file and
then use one of the string replacement functions to modify the contents.

To read a text file:

1 Create a new file in ColdFusion Studio.

2 Modify the file so that it appears as follows:

<html>
<head>

<title>Read a Text File</title>
</head>

<body>
Ready to read the file:

<cffile action="Read"

file="C:\inetpub\wwwroot\mine\message.txt"
variable="Message">

<cfoutput>
#Message#

</cfoutput>
</body>
</html>

3 Replace C:\inetpub\wwwroot\mine\message.txt with the location and name of a
text file on your server.

4 Save the file as readtext.cfm and view it in your browser.

328 Chapter 17 Managing Files on the Server
Writing a text file
You can use cffile to write a text file based on dynamic content. For example, you
could create static HTML files or log actions in a text file.

To create a form in which to enter data for a text file:

1 Open a new file in ColdFusion Studio.

2 Modify the file so that it appears as follows:

<html>
<head>

<title>Put Information into a Text File</title>
</head>

<body>
<h2>Put Information into a Text File</h2>

<form action="writetextfileaction.cfm" method="Post">
<p>Enter your name: <input type="text" name="Name" size="25">
<p>Enter the name of the file: <input type="text" name="FileName"

size="25">
<p>Enter your message:</p>
<textarea name="message"cols=45 rows=6></textarea>
</p>
<input type="submit" name="submit" value="Submit">

</form>
</body>
</html>

3 Save the file as writetextfileform.cfm in myapps under the Web root directory.

To write a text file:

1 Open a new file in ColdFusion Studio.

2 Modify the file so that it appears as follows:

<html>
<head>

<title>Untitled</title>
</head>
<body>
<cffile action="Write"

file="C:\inetpub\wwwroot\mine\#Form.FileName#"
output="Created By: #Form.Name#

#Form.Message# ">
</body>
</html>

3 Modify the path C:\inetpub\wwwroot\mine\ to point to a path on your server.

4 Save the file as writetextfileaction.cfm.

5 View the file writetextfileform.cfm in your browser, enter values, and submit
the form.

Performing Directory Operations 329
The text file is written to the location you specified. If the file already exists, it is
replaced.

You can use cffile action="Append" to append additional text to the end of an
existing text file, for example, when you create log files.

Performing Directory Operations
Use the cfdirectory tag to return file information from a specified directory and to
create, delete, and rename directories.

As with cffile, ColdFusion administrators can disable cfdirectory processing in
the ColdFusion Administrator Tags page. For details on the syntax of this tag, see the
CFML Reference.

Returning file information
When you use the action="list" attribute setting, cfdirectory returns five result
columns that you can reference in a cfoutput tag:

• name Directory entry name.

• size Directory entry size.

• type File type: F or D for File or Directory.

• dateLastModified Date an entry was last modified.

• attributes File attributes, if applicable.

• mode (UNIX only) The octal value representing the permissions setting for the
specified directory.

To view directory information:

1 Create a new file in ColdFusion Studio.

2 Modify the file so that it appears as follows:

<html>
<head>

<title>List Directory Information</title>
</head>

<body>
<h2>List Directory Information</h2>
<cfdirectory

directory="c:\inetpub\wwwroot\mine"
name="mydirectory"
sort="size ASC, name DESC, datelastmodified">

<table cellspacing=1 cellpadding=10>
<tr>

<th>Name</th>
<th>Size</th>
<th>Type</th>

330 Chapter 17 Managing Files on the Server
<th>Modified</th>
<th>Attributes</th>
<th>Mode</th>

</tr>
<cfoutput query="mydirectory">
<tr>

<td>#mydirectory.name#</td>
<td>#mydirectory.size#</td>
<td>#mydirectory.type#</td>
<td>#mydirectory.dateLastModified#</td>
<td>#mydirectory.attributes#</td>
<td>#mydirectory.mode#</td>

</tr>
</cfoutput>
</table>

</body>
</html>

3 Modify the line directory="c:\inetpub\wwwroot\mine"so that it points to a
directory on your server.

4 Save the file as directoryinfo.cfm and view it in your browser.

Note that depending on whether your server is on a UNIX system or a Windows
system, either the Attributes column or the Mode column is empty. Also, you can
specify a filename in the filter attribute to get information on a single file.

Chapter 18

Interacting with Remote Servers
This chapter describes how ColdFusion wraps the complexity of Hypertext Transfer
Protocol (HTTP) and File Transfer Protocol (FTP) communications in a simplified tag
syntax that lets you easily extend your site’s offerings across the Web.

Contents

• Using cfhttp to Interact with the Web.. 332

• Using the cfhttp Get Method.. 332

• Creating a Query from a Text File... 335

• Using the cfhttp Post Method... 337

• Performing File Operations with cfftp... 341

• Moving Complex Data Structures Across the Web with WDDX 345

• Converting CFML Data to a JavaScript Object.. 349

• Transferring Data from Browser to Server... 350

• Storing Complex Data in a String... 353

332 Chapter 18 Interacting with Remote Servers
Using cfhttp to Interact with the Web
The cfhttp tag, which enables you to retrieve information from a remote server, is
one of the more powerful tags in the CFML tag set. You can use one of two methods
to interact with a remote server using the cfhttp tag: Get or Post.

• Using the Get method, you can only send information to the remote server
directly in the URL. This method is often used for a one-way transaction in which
cfhttp retrieves an object.

• By comparison, the Post method can pass variables to a ColdFusion page or CGI
program, which processes them and returns data to the calling page. The calling
page then displays or further processes the data that was received. For example,
when you use cfhttp to Post to another ColdFusion page, that page does not
display. It processes the request and returns the results to the original
ColdFusion page, which then uses the information as appropriate.

Using the cfhttp Get Method
You use Get to retrieve files, including text and binary files, from a specified server.
The retrieved information is stored in a special variable, cfhttp.fileContent. The
following examples illustrate a few common Get operations.

To retrieve a file and store it in a variable:

1 Open a new file in ColdFusion Studio.

2 Modify the file so that it appears as follows:

<cfhttp method="Get"
url="http://www.ci.newton.ma.us/main.htm"
resolveurl="Yes">

<cfoutput>
#cfhttp.FileContent#

</cfoutput>

3 (Optional) Replace the url attribute value with the URL of a file you want to get.

4 Save the file as getwebpage.cfm in myapps under your Web root directory and
view it in your browser.

Using the cfhttp Get Method 333
Reviewing the code

The following table describes the code and its function:

To get a Web page and save it in a file:

1 Open a new file in ColdFusion Studio.

2 Modify the file so that it appears as follows:

<cfhttp
method = "Get"
url="http://www.ci.newton.ma.us/main.htm"
path="c:\temp"
file="newtonmain.htm">

3 (Optional) Replace the url attribute value with the URL of a file you want to save
and change the filename.

4 (Optional) Change the path from C:\temp to a path on your hard drive.

5 Save the file as savewebpage.cfm and view it in a text editor. The file does not
display properly in your browser because the Get operation saves only the
specified Web page. It does not save the frame, image, or other files that the page
might include.

Reviewing the code

The following table describes the code and its function:

Code Description

<cfhttp method="Get"
url="http://www.ci.newton.ma.us/
main.htm/

resolveurl="Yes">

Get the page specified in the URL and
make the links absolute instead of relative
so that they display properly.

<cfoutput>
#cfhttp.fileContent#

</cfoutput>

Display the page, which is stored in the
variable cfhttp.fileContent, in the
browser.

Code Description

<cfhttp
method = "Get"
url="http://www.ci.newton.ma.us

/main.htm"
path="c:\temp"
file="newtonmain.htm">

Get the page specified in the URL and
save it in the file specified in path and
file.
When you use the path and file
attributes, ColdFusion ignores any
resolveurl attribute. As a result, frames
and other included files cannot display
when you view the saved page.

334 Chapter 18 Interacting with Remote Servers
To get a binary file and save it:

1 Open a new file in ColdFusion Studio.

2 Modify the file so that it appears as follows:

<cfhttp
method="Get"
url="http://localhost/myapps/testfile.zip"
path="c:\temp"
file="MyTestFile.zip">

<cfoutput>
#cfhttp.MimeType#

</cfoutput>

3 Change the URL to point to a binary file you want to download.

4 Change the path to point to a path on your hard drive.

5 Save the file as savebinary.cfm in myapps under your Web root directory and
view it in your browser.

Reviewing the code

The following table describes the code and its function:

Code Description

<cfhttp
method="Get"
url="http://localhost/myapps/testfile.zip"
path="c:\temp"
file="MyTestFile.zip">

Get a binary file and save it in
the path and file specified.

<cfoutput>
#cfhttp.MimeType#

</cfoutput>

Display the MIME type of the
file.

Creating a Query from a Text File 335
Creating a Query from a Text File
You can create a query object from a delimited text file by using the cfhttp tag and
specifying method="Get" and the name attribute. This is a powerful method for
processing and handling generated text files. After you create the query object, you
can easily reference columns in the query and perform other ColdFusion operations
on the data.

ColdFusion processes text files in the following manner:

• You can specify a field delimiter with the delimiter attribute. The default is a
comma.

• If data in a field might include the delimiter character, you must surround the
entire field with the text qualifier character, which you can specify with the
textqualifier attribute. The default text qualifier is the double quotation mark
(").

• textqualifier="" specifies that there is no text qualifier. textqualifier=""""
(four " marks in a row) explicitly specifies the double quotation mark as the text
qualifier.

• If there is a text qualifier, you must surround all field values with the text qualifier
character.

• To include the text qualifier character in a field, use a double character. For
example, if the text qualifier is ", use "" to include a quotation mark in the field.

• The first row of text is always interpreted as column headings, so that row is
skipped. You can override the file’s column heading names by specifying a
different set of names in the columns attribute. You must specify a name for each
column. You then use these new names in your CFML code. However,
ColdFusion never treats the first row of the file as data.

• When duplicate column heading names are encountered, ColdFusion adds an
underscore character to the duplicate column name to make it unique. For
example, if two CustomerID columns are found, the second is renamed
"CustomerID_".

To create a query from a text file:

1 Create a new file in ColdFusion Studio.

2 Modify the file so that it appears as follows:

<!--- The text file has six columns separated by commas: --->
<!--- OrderID,OrderNum,OrderDate,ShipDate,ShipName,ShipAddress --->
<!--- This example uses the first row as the column names --->

<cfhttp method="Get"
url="http://127.0.0.1/orders/june/orders.txt"
name="juneorders">

<cfoutput query="juneorders">
OrderID: #OrderID#

Order Number: #OrderNum#

Order Date: #OrderDate#

</cfoutput>

336 Chapter 18 Interacting with Remote Servers
<!--- Now substitute different column names --->
<!--- by using the columns attribute --->
<hr>
Now using replacement column names

<cfhttp method="Get"
url="http://127.0.0.1/orders/june/orders.txt"
name="juneorders"
columns="ID,Number,ODate,SDate,Name,Address"
delimiter=",">

<cfoutput query="juneorders">
Order ID: #ID#

Order Number: #Number#

Order Date: #SDate#

</cfoutput>

3 Substitute the URL with the location of your text file.

4 Substitute the name of a text file and the column headers to those in your text file.

5 Save the file as querytextfile.cfm in myapps under your Web root directory and
view it in your browser.

Using the cfhttp Post Method 337
Using the cfhttp Post Method
Use the Post method to send cookie, form field, CGI, URL, and file variables to a
specified ColdFusion page or CGI program for processing. For Post operations, you
must use the cfhttpparam tag for each variable you want to post. The Post method
passes data to a specified ColdFusion page or an executable that interprets the
variables being sent and returns data.

For example, when you build an HTML form using the Post method, you specify the
name of the page to which form data is passed. You use the Post method in cfhttp in
a similar way. However, with cfhttp, the page that receives the Post does not, itself,
display anything.

To pass variables to a ColdFusion page:

1 Open a new file in ColdFusion Studio.

2 Modify the file so that it appears as follows:

<html>
<head>

<title>HTTP Post Test</title>
</head>

<body>
<H1>HTTP Post Test</H1>

<cfhttp method="Post"
url="http://127.0.0.1/myapps/server.cfm">

<cfhttpparam type="Cookie"
value="cookiemonster"
name="mycookie6">

<cfhttpparam type="CGI"
value="cgivar "
name="mycgi">

<cfhttpparam type="URL"
value="theurl"
name="myurl">

<cfhttpparam type="Formfield"
value="wbfreuh@macromedia.com"
name="emailaddress">

<cfhttpparam type="File"
name="myfile"
file="c:\testImage.gif">

</cfhttp>

<cfoutput>
File Content:

#cfhttp.filecontent#

Mime Type: #cfhttp.MimeType#

</cfoutput>

338 Chapter 18 Interacting with Remote Servers
</body>
</html>

3 Replace the path to the GIF file to a path on your server.

4 Save the file as posttest.cfm in myapps under your Web root directory.

Reviewing the code

The following table describes the code and its function:

To view the variables:

1 Create a new file in ColdFusion Studio.

2 Modify the file so that it appears as follows:

<cffile destination="C:\temp\Junk"
nameconflict="Overwrite"
filefield="Form.myfile"
action="Upload"
attributes="Normal">

Code Description

<cfhttp method="Post"
url="http://127.0.0.1/myapps/
server.cfm">

Post an HTTP request to the specified
page.

<cfhttpparam type="Cookie"
value="cookiemonster"
name="mycookie6">

Send a cookie in the request.

<cfhttpparam type="CGI"
value="cgivar "
name="mycgi">

Send a CGI variable in the request.

<cfhttpparam type="URL"
value="theurl"
name="myurl">

Send a URL in the request.

<cfhttpparam type="Formfield"
value="wbfreuh@macromedia.com"
name="emailaddress">

Send a Form field in the request.

<cfhttpparam type="File"
name="myfile"
file="c:\testImage.gif">

</cfhttp>

Send a file in the request.
The </cfhttp> tag ends the http request.

<cfoutput>
File Content:

#cfhttp.filecontent#

Display the contents of the file that the
page that is posted to creates by
processing the request. In this example,
this is the output from the cfoutput tag in
server.cfm.

Mime Type: #cfhttp.MimeType#

</cfoutput>

Display the MIME type of the created file.

Using the cfhttp Post Method 339
<cfoutput>
The URL variable is: #URL.myurl#

The Cookie variable is: #Cookie.mycookie6#

The CGI variable is: #CGI.mycgi#.

The Formfield variable is: #Form.emailaddress#.

The file was uploaded to #File.ServerDirectory#\#File.ServerFile#.

</cfoutput>

3 Replace C:\temp\Junk with an appropriate directory path on your hard drive.

4 Save the file as server.cfm in myapps under your Web root directory.

5 View posttest.cfm in your browser and look for the file in C:\temp\Junk (or your
replacement path).

Reviewing the code

The following table describes the code and its function:

Code Description

<cffile destination="C:\temp\Junk"
nameconflict="Overwrite"
filefield="Form.myfile"
action="Upload"
attributes="Normal">

Write the transferred document to a file on
the server. Note that you send the file
using the cfhttpparam type="File"
attribute, but the receiving page gets it as
a Form variable, not a File variable. This
cffile tag creates File variables, as
follows.

<cfoutput> Output information. The results are not
displayed by this page. They are passed
back to the posting page in its
cfhttp.filecontent variable.

The URL variable is: #URL.myurl#
 Output the value of the URL variable sent
in the HTTP request.

The Cookie variable is:
#Cookie.mycookie#

Output the value of the Cookie variable
sent in the HTTP request.

The CGI variable is: #CGI.mycgi#
 Output the value of the CGI variable sent
in the HTTP request.

The Form variable is:
#Form.emailaddress#.

Output the Form variable sent in the HTTP
request. Note that you send the variable
using the type="formField" attribute but
the receiving page gets it as a Form
variable.

The file was uploaded to
#File.ServerDirectory#\#File.
ServerFile#.
</cfoutput>

Output the results of the cffile tag on this
page. This time, the variables really are
File variables.

340 Chapter 18 Interacting with Remote Servers
To return results of a CGI program:

The following code runs the (theoretical) CGI program search.exe on the (equally
theoretical) somesiteorother.com site and displays the results, including both the
Mime type and Length of the response. The search.exe program must expect a
“search” parameter.

<cfhttp method="Post"
url="http://www.somesiteorother.com/search.exe"
resolveurl="Yes">

<cfhttpparam type="Formfield"
name="search"
value="Macromedia ColdFusion">

</cfhttp>

<cfoutput>
Response Mime Type: #cfhttp.MimeType#

Response Length: #len(cfhttp.filecontent)#

Response Content:

#htmlcodeformat(cfhttp.filecontent)#

</cfoutput>

Performing File Operations with cfftp 341
Performing File Operations with cfftp
The cfftp tag lets you perform tasks on remote servers using File Transfer Protocol
(FTP). You can use cfftp to cache connections for batch file transfers.

Note
To use cfftp, the Enable cfftp Tag option must be selected on the Tag Restrictions
page of the Basic Security section of the ColdFusion Administrator Security tab.

For server/browser operations, use the cffile, cfcontent, and cfdirectory tags.

Using cfftp involves two major types of operations: connecting, and transferring
files. The FTP protocol also provides commands for listing directories and
performing other operations. For a complete list of attributes that support FTP
operations and additional details on using the cfftp tag, see the CFML Reference.

To open an FTP connection and retrieve a file listing:

1 Open a new file in ColdFusion Studio.

2 Modify the file so that it appears as follows:

<html>
<head>

<title>FTP Test</title>
</head>

<body>
<h1>FTP Test</h1>
<!--- Open ftp connection --->
<cfftp connection="Myftp"

server="MyServer"
username="MyUserName"
password="MyPassword"
action="Open"
stoponerror="Yes">

<!--- Get the current directory name. --->
<cfftp connection=Myftp

action="GetCurrentDir"
stoponerror="Yes">

<!--- output directory name --->
<cfoutput>

The current directory is: #cfftp.returnvalue#<p>
</cfoutput>

<!--- Get a listing of the directory. --->
<cfftp connection=Myftp

action="listdir"
directory="#cfftp.returnvalue#"
name="dirlist"
stoponerror="Yes">

342 Chapter 18 Interacting with Remote Servers
<!--- Close the connection.--->
<cfftp action="close" connection="Myftp">
<p>Did the connection close successfully?

<cfoutput>#cfftp.succeeded#</cfoutput></p>

<!--- output dirlist results --->
<hr>
<p>FTP Directory Listing:</p>

<cftable query="dirlist" colheaders="yes" htmltable>
<cfcol header="Name" TEXT="#name#">
<cfcol header="Path" TEXT="#path#">
<cfcol header="URL" TEXT="#url#">
<cfcol header="Length" TEXT="#length#">
<cfcol header="LastModified"
TEXT="#DateFormat(lastmodified)#">
<cfcol header="IsDirectory"

TEXT="#isdirectory#">
</cftable>

3 Change MyServer to the name of a server for which you have FTP permission.

4 Change MyUserName and MyPassword to a valid username and password.

To establish an anonymous connection, enter “anonymous” as the username
and an e-mail address (by convention) for the password.

5 Save the file as ftpconnect.cfm in myapps under your Web root directory.

Reviewing the code

The following table describes the code and its function:

Code Description

<cfftp connection="Myftp"
server="MyServer"
username="MyUserName"
password="MyPassword"
action="Open"
stoponerror="Yes">

Open an FTP connection to the
MyServer server and log on as
MyUserName. If an error occurs, stop
processing and display an error. You
can use this connection in other cfftp
tags by specifying the Myftp connection.

<cfftp connection=Myftp
action="GetCurrentDir"
stoponerror="Yes">

<cfoutput>
The current directory is:

#cfftp.returnvalue#<p>
</cfoutput>

Use the Myftp connection to get the
name of the current directory; stop
processing if an error occurs.

Display the current directory.

Performing File Operations with cfftp 343
hafter you establish a connection with cfftp, you can reuse the connection to
perform additional FTP operations until either you or the server closes the
connection. When you access an already-active FTP connection, you do not need to
re-specify the username, password, or server. In this case, make sure that when you
use frames, only one frame uses the connection object.

Note
For a single simple FTP operation, such as GetFile or PutFile, you do not need to
establish a connection. Specify all the necessary login information, including the
server and any login and password, in the single cfftp request.

Caching connections across multiple pages
The FTP connection established by cfftp is maintained only in the current page
unless you explicitly assign the connection to a variable with Application or Session
scope.

<cfftp connection=Myftp
action="ListDir"
directory="#cfftp.returnvalue#"
name="dirlist"
stoponerror="Yes">

Use the Myftp connection to get a
directory listing. Use the value returned
by the last cfftp call (the current
directory of the connection) to specify
the directory to list. Save the results in a
variable named dirlist (a query object).
Stop processing if there is an error.

<cfftp action="close"
connection="Myftp">
<p>Did the connection close
successfully?

<cfoutput>#cfftp.succeeded#</
cfoutput></p>

Close the connection, and do not stop
processing if the operation fails
(because you can still use the results).
Instead, display the value of the
cfftp.succeeded variable, which is
Yes if the connection is closed, and No
if the operation failed.

<cftable query="dirlist"
colheaders="yes" htmltable>

<cfcol header="Name"
TEXT="#name#">

<cfcol header="Path"
TEXT="#path#">

<cfcol header="URL"
TEXT="#url#">

<cfcol header="Length"
TEXT="#length#">

<cfcol header="LastModified"
TEXT="#DateFormat(lastmodified)#">

<cfcol header="IsDirectory"
TEXT="#isdirectory#">

</cftable>

Display a table with the results of the
ListDir FTP command.

Code Description

344 Chapter 18 Interacting with Remote Servers
Assigning a cfftp connection to an Application variable could cause problems, since
multiple users could access the same connection object at the same time. Creating a
Session variable for a cfftp connection makes more sense, because the connection
is available to only one client and does not last past the end of the session.

Example: Caching a connection
<cflock scope="Session" timeout=10>
<cfftp action="Open"

username="anonymous"
password="me@home.com"
server="ftp.eclipse.com"
connection="Session.myconnection">

</cflock>

In this example, the connection cache remains available to other pages within the
current session. You must enable Session variables in your application for this
approach to work, and you must lock code that uses Session variables. For
information on locking, see “Locking Code with cflock” on page 233.

Note
Changing a connection’s characteristics, such the retrycount or timeout values,
might require you to re-establish the connection.

Connection actions and attributes
The following table shows the available cfftp actions and the attributes they require
when you use a named (that is, cached) connection. If you do not specify an existing
connection name, you must specify the username, password, and server attributes.

Action Attributes Action Attributes

Open none Rename existing
new

Close none Remove server
item

ChangeDir directory GetCurrentDir none

CreateDir directory GetCurrentURL none

ListDir name
directory

ExistsDir directory

RemoveDir directory ExistsFile remotefile

GetFile localfile
remotefile

Exists item

PutFile localfile
remotefile

Moving Complex Data Structures Across the Web with WDDX 345
Moving Complex Data Structures Across the Web with
WDDX

You can move complex data structures across the Web using Web Distributed Data
Exchange (WDDX). This capability is based on Extensible Markup Language (XML)
1.0 and you can use it to exchange data between CFML applications and other
applications.

Additionally, you can use WDDX for server-to-browser and browser-to-server
JavaScript data exchanges. You can transfer server data to the browser and convert it
to JavaScript objects. You can serialize JavaScript data generated on the browser,
which translates the native data structures into an abstract representation in XML,
and transferr the data to the application server. Conversely, you can deserialize
WDDX XML into a native data structure. You serialize and deserialize WDDX data
using the cfwddx tag.

While WDDX is a valuable tool for ColdFusion developers, its usefulness is not
limited to CFML. WDDX serialization of common programming data structures
(such as arrays, record sets, and structures) enables data communication, using
HTTP, across a range of languages and platforms. Also, you can use WDDX to store
complex data in a database, file, or even Client variable.

WDDX was created in 1998, and many applications now expose WDDX capabilities.
The best source of information about WDDX is http://www.openwddx.org/. This site
offers a free download of the WDDX SDK and a number of resources, including a
WDDX FAQ and a developer forum.

An overview of distributed data for the Web
WDDX is an XML vocabulary for describing complex data structures such as arrays,
associative arrays, and record sets in a generic fashion so you can move them
between different application server platforms and between application servers and
browsers using only HTTP. Target platforms for WDDX include ColdFusion, Active
Server Pages (ASP), JavaScript, Perl, Java, Python, COM, Macromedia Flash, and
PHP.

Unlike other approaches to creating XML-based generic distributed object systems
for the Web, WDDX is not designed as an analog of traditional object programming
languages. These approaches use XML as a generic descriptor for initiating remote
procedure calls between different object frameworks. This is a valuable response to
the problem of using traditional object-based applications on the Internet, but it is
more useful as a bridge between different programming paradigms than it is as a
Web-native methodology for distributing structured data between application.

There are several problems with merging the distributed object model of computing
with the Internet. Primarily, this model was designed with a completely different
vision of general internetworking. Instead of the “dumb and disconnected” model of
HTTP, distributed computing was built on the assumption of rich network services
that allow resources on remote machines to act like local components. These
services allow an application on one system to find, invoke, and maintain state with

346 Chapter 18 Interacting with Remote Servers
objects on a remote system. Communication between objects on remote systems
uses an efficient, special-purpose wire protocol.

In the disconnected world, however, these services are a barrier to development. At
the most fundamental level, the wire protocols of Distributed COM and CORBA are
blocked by most Web firewall software. The largest barrier, though, is that
client-server-oriented distributed computing frameworks impose a development
methodology that is radically different from that of the Web. This methodology
excludes the vast majority of developers building Web applications whose main tools
are tag-based markup languages and scripting. While WDDX works with systems
that support component object development paradigms, there is a large set of
applications that can benefit from the general characteristics of a distributed data
system without the client-server overhead.

WDDX and Web Services
Independently of WDDX, the Web community has been working on how to solve the
general problem of open and flexible distributed computing using a model that is
closer to the traditional messaging and client-server systems.

The result is a set of specifications for Web Services, such as Simple Object Access
Protocol (SOAP), XML Protocol (XMLP), Web Service Description Language (WSDL)
and Universal Description, Discovery, and Integration (UDDI). The importance of
Web Services will increase as the technology matures.

WDDX does not compete with Web services. It is a complementary technology
focused on solving simple problems of application integration on the Web in a
pragmatic, productive manner at very low cost.

WDDX is a proven technology that has been shipping for several years. There are
numerous applications that leverage WDDX as a foundation for distributed
interoperability with other applications.

Currently, WDDX offers some unique advantages not present in Web Services:

• It can be used by lightweight clients, such as browsers or the Macromedia Flash
player.

• It can be used to store complex data structures in files and databases.

Applications that take advantage of WDDX can continue to do so even when Web
Services become widely available. If need be, these applications could easily be
converted to use the upcoming Web Services standards. Only the service and data
interchange formats—not the application model—must change.

WDDX components
WDDX is based on XML, which is a World Wide Web Consortium (W3C)
Recommendation. The core of WDDX is an XML vocabulary, a set of components for
each of the target platforms to serialize and deserialize data into the appropriate data
structure, and a document type definition (DTD) that describes the structure of
standard data types. Functionally, this creates a way to move data, its associated data

Moving Complex Data Structures Across the Web with WDDX 347
types, and descriptors that allow the data to be manipulated on a target system
between arbitrary application servers.

When you use WDDX in ColdFusion pages, you typically use the ColdFusion cfwddx
tag and the JavaScript utility classes that are installed as /CFIDE/scripts/wddx.js
on your local host.

Working with application-level data
The real strength of WDDX is clear if you think of the client and server as a unified
platform for applications. There is a subtle, but profound, distinction between this
view and the traditional view of an application in which services are partitioned
between the client and server.

In client-server, a client might query a database and get a record set that can be
browsed, updated and returned to the server without requiring a persistent
connection. In this scenario, data is highly structured and that structure is integrated
into the client side of the application ahead of time.

While this style of data binding relies on the presence of data sources that expose
well-structured data of known types, WDDX is designed to transport
application-level data structures to facilitate seamless computing between the client
and the server side of a Web application. Application-level data structures generally
differ from data exposed by traditional data sources, such as databases. These
structures are generally more complex and ad hoc, with dynamic structure. WDDX
lets you work with this data without the overhead of setting up a data source for
every type of data needed. Therefore, it integrates nicely with and complements
other approaches that rely on existing data sources.

Data exchange across application servers
The other common use of WDDX is expected to be the transfer of complex,
structured data seamlessly between different application server platforms. For
example, an application based on ColdFusion at one business could send a purchase
order to a supplier running a CGI-based system. The supplier can then extract
information from the order and pass it to a shipping company running an
application based on ASP. Unlike traditional client-server approaches (including
distributed object systems), minimal-to-no prior knowledge of the source or target
systems is required by any of the other system components.

Time zone processing

Because producers and consumers of WDDX packets can be in geographically
dispersed locations, using time zone information during the serialization and
deserialization phases becomes critical for correct date-time processing.

All ColdFusion WDDX serializers (CFML and JavaScript) have a useTimezoneInfo
attribute or property that specifies whether to use time zone information in the
serialization process. The default value is True.

348 Chapter 18 Interacting with Remote Servers
In the CFML implementation, useTimezoneInfo is an attribute of the cfwddx
action=cfml2wddx tag. In the JavaScript implementation, useTimezoneInfo (note
the case sensitivity of JavaScript) is a property of the WddxSerializer object.

Date-time values in WDDX are represented using a subset of the ISO8601 format.
Time zone information is represented as an hour/minute offset from UTC; for
example, “1998-9-8T12:6:26-4:0”.

During WDDX deserialization to CFML, time zone information is automatically
taken into account and all date-time values are converted to local time. In this way,
UTC is taken out of the picture entirely and you do not need to worry about the
details of time zone conversions.

However, during deserialization to JavaScript expressions, time zone information is
not taken into account. Complications arise because of the difficulty of determining
the time zone of the browser.

How WDDX works
The WDDX vocabulary describes a data object with a high level of abstraction. For
instance, a simple structure with two string variables might have the following form
after it is serialized into a WDDX XML representation:

<var name=’x’>
<struct>

<var name=’a’>
<string>Property a</string>

</var>

<var name=’b’>
<string>Property b</string>

</var>

</struct>
</var>

When the WDDX Deserializer object deserializes this XML, it creates a structure that
is also created by either of the following scripts:

The WddxSerializer and WddxDeserializer objects are defined in the file CFIDE/
scripts/wddx.js. For detailed information on these JavaScript objects, see the CFML
Reference.

JavaScript CFScript

x = new Object();
x.a = "Property a";
x.b = "Property b";

x = structNew();
x.a = "Property a";
x.b = "Property b";

Converting CFML Data to a JavaScript Object 349
Converting CFML Data to a JavaScript Object
The following example demonstrates the transfer of a cfquery result set from a
CFML page executing on the server to a JavaScript object that is processed by the
browser.

The application consists of four principal sections:

• Running a data query

• Including the WDDX JavaScript utility classes

• Calling the conversion function

• Outputting the object data in HTML

The following example uses the cfsnippets data source that is installed with
ColdFusion:

<!--- Create a simple query --->
<cfquery name = "q" datasource ="cfsnippets">

SELECT Message_Id, Thread_id, Username, Posted
FROM messages

</cfquery>

<!--- Load the wddx.js file, which includes the dump function --->
<!--- requests to the server --->
<script type="text/javascript"

src="/CFIDE/scripts/wddx.js"></script>

<script>
// Use WDDX to move from CFML data to JS
<cfwddx action="cfml2js" input="#q#" topLevelVariable="qj">

// Dump the record set to show that all the data has reached
// the client successfully.
document.write(qj.dump(true));

</script>

Note
To see how cfwddx Action="cfml2js" works, view the source to the page in your
browser.

350 Chapter 18 Interacting with Remote Servers
Transferring Data from Browser to Server
This example serializes form field data, posts it to the server, deserializes it, and
outputs the data. For simplicity, only a small amount of data is collected. In
applications that generate complex JavaScript data collections, you can extend this
basic approach very effectively. Note that this example uses the WddxSerializer
JavaScript object to serialize the data, and the cfwddx tag to deserialize the data.

To use the example:

1 Save it in the myapps directory as wddxSerializeDeserialze.cfm

2 Display http://localhost/myapps/wddxSerializeDeserialze.cfm in your browser.

3 Enter a first name and last name in the form fields.

4 Click Next.

The name appears in the Names added so far box.

5 Repeat steps 3 and 4 to add as many names as you wish.

6 Click Serialize to serialize the resulting data.

The resulting WWDX packet appears in the WDDX packet display box. This step
is intended only for test purposes. Real applications handle the serialization
automatically.

7 Click Submit to submit the data.

The WDDX packet is transferred to the server-side processing code, which
deserializes it and displays the information.

<!--- load the wddx.js file --->
<script type="text/javascript"

src="/CFIDE/scripts/wddx.js"></script>

<!--- Data binding code --->
<script>

// Generic serialization to a form field
function serializeData(data, formField)
{

wddxSerializer = new WddxSerializer();
wddxPacket = wddxSerializer.serialize(data);
if (wddxPacket != null)
{

formField.value = wddxPacket;
}
else
{

alert("Couldn’t serialize data");
}

}

Transferring Data from Browser to Server 351
// Person info record set with columns firstName and lastName
// Make sure the case of field names is preserved
var personInfo = new WddxRecordset(new Array("firstName",
"lastName"), true);

// Add next record to end of personInfo record set
function doNext()
{

// Extract data
var firstName = document.personForm.firstName.value;
var lastName = document.personForm.lastName.value;

// Add names to record set
nRows = personInfo.getRowCount();
personInfo.firstName[nRows] = firstName;
personInfo.lastName[nRows] = lastName;

// Clear input fields
document.personForm.firstName.value = "";
document.personForm.lastName.value = "";

// Show added names on list
// This gets a little tricky because of browser differences
var newName = firstName + " " + lastName;
if (navigator.appVersion.indexOf("MSIE") == -1)
{

document.personForm.names[length] =
 new Option(newName, "", false, false);

}
else
{

// IE version
var entry = document.createElement("OPTION");
entry.text = newName;
document.personForm.names.add(entry);

}

}

</script>

<!--- Data collection form --->
<form action="wddx_browser_2_server.cfm" method="Post"
name="personForm">

<!--- Input fields --->
Personal information<p>
First name: <input type=text name=firstName>

Last name: <input type=text name=lastName>

<p>

352 Chapter 18 Interacting with Remote Servers
<!--- Navigation & submission bar --->
<input type="button" value="Next" onclick="doNext()">
<input type="button" value="Serialize"
onclick="serializeData(personInfo, document.personForm.wddxPacket)">
<input type="submit" value="Submit">
<P>
Names added so far:

<select name="names" size="5">
</select>
<p></p>

<!--- This is where the WDDX packet will be stored --->
<!--- In a real application this would be a hidden input field. --->
WDDX packet display:<p>
<textarea name="wddxPacket" rows="10" cols="80" wrap="Virtual">
</textarea>

</form>

<!--- Server-side processing --->
<hr>
<p>Server-side processing</p>
<cfif isdefined("form.wddxPacket")>

<cfif form.wddxPacket neq "">

<!--- Deserialize the WDDX data --->
<cfwddx action="wddx2cfml" input=#form.wddxPacket#
output="personInfo">

<!--- Display the query --->
The submitted personal information is:<P>
<cfoutput query=personInfo>

Person #CurrentRow#: #firstName# #lastName#

</cfoutput>

<cfelse>
The client did not send a well-formed WDDX data packet!

</cfif>
<cfelse>

No WDDX data to process at this time.
</cfif>

Storing Complex Data in a String 353
Storing Complex Data in a String
The following simple example uses WDDX to store complex data, a data structure
that contains arrays as a string in a Client variable. It uses the cfdump tag to display
the contents of the structure before serialization and after deserialization. It uses the
HTMLEditFormat function in a cfoutput tag to display the contents of the Client
variable. The HTMLEditFormat function is required to prevent the browser from
trying to interpret (and throwing away) the XML tags in the variable.

<!--- Enable client state management --->
<cfapplication name="relatives" clientmanagement="Yes">

<!--- Build a complex data structure --->
<cfscript>

relatives = structNew();
relatives.father = "Bob";
relatives.mother = "Mary";
relatives.sisters = arrayNew(1);
arrayAppend(relatives.sisters, "Joan");
relatives.brothers = arrayNew(1);
arrayAppend(relatives.brothers, "Tom");
arrayAppend(relatives.brothers, "Jesse");

</cfscript>

A dump of the original relatives structure:

<cfdump var="#relatives#">

<!--- Convert data structure to string form and save it in the
client scope --->

<cfwddx action="cfml2wddx" input="#relatives#"
output="Client.wddxRelatives">

The contents of the Client.wddxRelatives variable:

<cfoutput>#HtmlEditFormat(Client.wddxRelatives)#</cfoutput>

<!--- Now read the data from client scope into a new structure --->
<cfwddx action="wddx2cfml" input="#Client.wddxRelatives#"
output="sameRelatives">

A dump of the sameRelatives structure

generated from client.wddxRelatives

<cfdump var="#sameRelatives#">

354 Chapter 18 Interacting with Remote Servers

Chapter 19

Application Security
ColdFusion supports several levels of security. This chapter explains how to deploy
user security, which offers runtime security for ColdFusion applications. It also
describes the Remote Development Services security feature, which authenticates
developers accessing server resources through ColdFusion Studio.

For information on setting up security elements or using Administrator-controlled
security features, see Advanced ColdFusion Administration.

Contents

• ColdFusion Security Features .. 356

• Remote Development Services (RDS) Security... 356

• Overview of User Security... 357

• Using Advanced Security in Application Pages... 358

• Using the cfauthenticate tag .. 359

• Authentication and Authorization Functions... 360

• Catching Security Exceptions... 361

• Using the cfimpersonate Tag.. 362

• Example of User Authentication and Authorization .. 363

356 Chapter 19 Application Security
ColdFusion Security Features
ColdFusion Server Professional and Enterprise editions include Advanced Security
features that provide scalable, granular security for building and deploying your
ColdFusion applications:

• Application development System administrators can control access to files,
data sources, and administration for each developer on the team. They can
coordinate team development on shared servers with the assurance that
sensitive data and applications are secure.

• Application deployment ColdFusion developers can create complex rules to
programmatically control access to functionality within applications. You can
confine applications to secure areas, thereby flexibly restricting the access that
the applications have to directories, components, databases, or other resources
on the server.

This chapter describes the ColdFusion Server features that let you integrate a total
security solution into your applications.

Remote Development Services (RDS) Security
ColdFusion RDS security provides security services to developers working in
ColdFusion Studio. RDS security is at the core of the security framework in a
team-oriented ColdFusion development environment in which groups of
developers, working in ColdFusion Studio, require different levels of access to
ColdFusion files and data sources.

When you are working in ColdFusion Studio, you access these ColdFusion resources
remotely, opening *.cfm files or accessing data sources. RDS security authenticates
you and grants access only to the resources appropriate to your login. Authentication
is carried out against the Windows NT domain server, an ODBC data source, or an
LDAP directory specified in the ColdFusion Administrator as part of a security
context.

There are two ways to implement RDS security services:

• Basic Security Requires developers in ColdFusion Studio to supply a password
which, when authenticated, permits access to RDS Services, such as browsing,
editing, database operations, debugging, and so on.

• Advanced Security Lets ColdFusion administrators restrict or permit access to
file systems and data sources based on security contexts and policies established
on the Advanced Security page of the ColdFusion Administrator.

Your company or ISP ColdFusion Server administrator configures RDS security so
that it best meets the needs of your group.

For detailed information about setting up RDS security, see Advanced ColdFusion
Administration.

Overview of User Security 357
Overview of User Security
User security authenticates users when they log into a ColdFusion application, and
then assigns privileges based on group membership or other criteria that you
determine. For example, suppose you use ColdFusion to build and host your
company’s intranet. The Human Resources department maintains a page on the
intranet on which all employees can access timely information about the company,
such as the latest company policies, upcoming events, and job postings. You want
everyone to be able to read the information, but you want only certain authorized
Human Resources employees to be able to add, update, or delete information.

In addition, you might want to let employees view customized information about
their salaries, job levels, and performance reviews. You certainly would not want one
employee to view sensitive information about another employee, but you would
want managers to be able to see, and possibly update, information about their direct
reports. User security authenticates and authorizes users each time that they try to
access or work with sensitive data.

User security is made up of two components:

• Security contexts, configured on the Advanced Security page of the ColdFusion
Administrator. A security context provides the framework against which to
authenticate and authorize users.

• Code you write in your application pages that checks against a security context to
see whether a user is allowed to access a particular resource and then takes
appropriate action.

Before you can implement user security in your applications, you must make sure
that your ColdFusion administrator installed Advanced Security on the server and
configured the appropriate security framework for your application. After the
security framework is in place, you can code security features into your ColdFusion
applications. For detailed information about installing Advanced Security and
setting up a security framework, see Advanced ColdFusion Administration.

358 Chapter 19 Application Security
Using Advanced Security in Application Pages
Advanced Security makes it easier for developers to enforce application security.
After your administrator sets up the appropriate security contexts for your
application, you can start using ColdFusion security tags and functions to
authenticate users and see whether they are authorized for the part of the
application they are trying to access.

This section describes how to use security tags and functions to authenticate users
and provide or withhold resources according to the security context’s rules.

• Include cfauthenticate on any application page where you want to
authenticate users; that is, to ensure that users are who they say they are. You
typically use cfauthenticate in your application’s Application.cfm file. Pass the
authentication information to subsequent pages on which you want to test for
authentication.

• ColdFusion sets a cookie, cfauth, to contain authentication information. If you
choose not to use this cookie, you must check authentication for each request.

• Use the IsAuthenticated function to check if the current user is authenticated.

• Use the IsAuthorized function to check whether the user is authorized to access
resources. This function lets developers offer or deny access to protected
resources based on a user’s authorization level, which is determined by already
established security contexts.

• Use the cfimpersonate tag wherever you want to provide a greater level of access
than is otherwise assigned to a particular user.

Read the section “Example of User Authentication and Authorization” on page 363 to
see code examples that show how these tags and functions work in ColdFusion
applications.

To learn about syntax and usage for the cfauthenticate and cfimpersonate tags,
and the IsAuthenticated and IsAuthorized functions, see the CFML Reference.

Encrypting application pages

For an added measure of security, you can encrypt strings in your applications using
the Encrypt and Decrypt functions. For descriptions of these functions, see the
CFML Reference.

Using the cfauthenticate tag 359
Using the cfauthenticate tag
The cfauthenticate tag has several required attributes:

• securityContext Describes which security context to use for authentication
and authorization. This name matches the security context as defined on the
Advanced Security page of the ColdFusion Administrator.

• username The user name required to access the protected resources.

• password The password required to access the protected resources.

You usually set the username and password attributes using variables that are passed
in a cookie from form fields on a secure login page for the current session.

In addition, cfauthenticate has two optional attributes:

• setCookie Indicates whether ColdFusion sets a cookie to contain
authentication information. This cookie is encrypted and includes the user
name, security context, browser remote address, and the HTTP user agent.
Default is Yes.

• throwOnFailure Indicates whether ColdFusion throws an exception of type
Security if authentication fails. Default is Yes.

Example
<cfauthenticate securitycontext="MyAppSecurityContextName"

username=#userID#
password=#pwd#>

If the user is not already defined in the system, ColdFusion throws a Security
exception. You can either reject access to the resource or reroute the user to a login
page. For example, you can display a login form and then, if the user logs in
successfully, display the originally requested page.

For a longer code example, see “Example of User Authentication and Authorization”
on page 363.

360 Chapter 19 Application Security
Authentication and Authorization Functions
After you use cfauthenticate to check whether the user is defined for a particular
security context, you can use the following security functions throughout your
applications any time you need to authenticate or authorize a user:

• IsAuthenticated checks whether the current session was authenticated by the
cfauthenticate tag.

• IsAuthorized checks whether the authenticated user has access to the named
resource, based on rules defined in the security context for which the user is
authenticated.

Using the IsAuthenticated function
The IsAuthenticated function checks whether a cfauthenticate tag successfully
executed for the current request. If not, it looks for the cfauth cookie to determine
whether the user is authenticated. If you do not set a cfauth cookie with
cfauthenticate, you must call cfauthenticate for every request in the application.

The IsAuthenticated function returns True if the user is authenticated for the
current request; otherwise, it returns False.

If you call IsAuthenticated with the optional security_context_name parameter,
the function returns True if the user is authenticated in the named security context;
otherwise it returns False. The IsAuthenticated function has the following form:

IsAuthenticated("security_context_name")

Using the IsAuthorized function
After a user is authenticated, you can use the IsAuthorized function to check which
resources the user is allowed to access. You define authorization levels when you
create security policies on the Advanced Security page of the ColdFusion
Administrator.

IsAuthorized returns True if the user is authorized to perform the specified action
on the specified ColdFusion resource. IsAuthorized takes three parameters, as
follows:

IsAuthorized(ResourceType, ResourceName, [ResourceAction])

For example, to check whether the authenticated user is authorized to update a data
source resource called orders, use this syntax:

IsAuthorized("Datasource", "orders", "update")

In this example, the IsAuthorized function returns True if the user is authorized to
update the named data source, or if the data source is not protected in the security
context.

Catching Security Exceptions 361
Note
The ColdFusion Server does not check user authorization unless you specifically
request it with the IsAuthorized function. It is up to you to decide what action to
take based on the results of the IsAuthorized call.

Catching Security Exceptions
You can use the cftry and cfcatch tags to catch security exceptions. Setting the
type attribute in cfcatch to "Security" enables you to catch failures in the
cfauthenticate tag. You can also catch failures from the IsAuthorized or
IsAuthenticated functions.

Set the cfauthenticate throwOnFailure attribute to Yes and enclose the tag in a
cftry/cfcatch block if you want to handle possible exceptions programmatically.

For information on exception-handling strategies in ColdFusion, see “Exception
handling strategies” on page 208.

Example

This example shows the use of exception handling with cfauthenticate in an
Application.cfm file. The cfauthenticate tag authenticates a user and sets the
security context for an application.

If the user is not already defined in the system, you can either reject the page, request
that the user respecify the username and password, or define a new user. The
following example just rejects the page request and displays a message:

<html>
<head>

<title>cfauthenticate Example</title>
</head>

<body>
<h3>cfauthenticate Example></h3>

<!--- This code is from an Application.cfm file --->

<cftry>
<cfauthenticate securityContext="MyApplicationSC"

username=#user#
password=#pwd#>

<cfcatch type="Security">
<!--- The message to display --->
<h3>Authentication error</h3>

<!--- display a message. Alternatively, you might place code
here to define the user to the security context. --->

<cfoutput>
<p>#cfcatch.Message#</p>
</cfoutput>

362 Chapter 19 Application Security
</cfcatch>
</cftry>

<cfapplication name="Personnel">

</body>
</html>

Using the cfimpersonate Tag
The cfimpersonate tag gives ColdFusion developers a way to execute a segment of
code in a secure manner. This tag is useful when you want to briefly grant a type of
access that you would normally withhold. Suppose you are an internet service
provider (ISP) who hosts ColdFusion development services. You provide a set of
custom tags that let your customers add features such as hit counters, guest books,
and message boards to the ColdFusion applications they create. To provide this type
of functionality, you must also provide access to some resources that you might
prefer to protect. Using cfimpersonate provides access to these resources in a safe
manner by wrapping the functionality in a custom tag.

For example, as an ISP, you definitely do not want your customers to access the
cffile tag on your servers. However, if you provide your customers with a hit
counter, you must let them read specific, system-maintained files, in this case, the
file that contains number of hits to the customer’s home page. You can provide the
hit-counter in a custom tag that uses the cffile tag. To ensure that the custom tag
can access the cffile tag, it needs a way to impersonate a trusted user while the tag
is executing and then to revert back to the nontrusted user after the trusted piece of
code executes.

The cfimpersonate tag has the following required attributes:

• securitycontext Describes which security context to use for authentication
and authorization. This name matches the security context as defined on the
Advanced Security page of the ColdFusion Administrator.

• username The username of the user to impersonate.

• password The password of the user to impersonate.

• type Indicates the type of impersonation to implement, CF for application level
or OS for operating system level. Application-level impersonation lets you
assume the rights assigned to a ColdFusion user by a specified security context.
Operating-system-level impersonation lets you assume the rights assigned to a
Windows NT user by a specified Windows NT domain. Operating-system-level
impersonation is not currently available for UNIX.

In addition, cfimpersonate has one optional attribute:

• throwOnFailure Indicates whether ColdFusion throws an exception of type
Security if authentication fails. Default is Yes.

Example of User Authentication and Authorization 363
Example

The following example reads a protected file because the ColdFusion user pfoley has
been granted access to the file by the security context MyContext. If the user cannot
be authenticated, ColdFusion throws a Security exception.

<cfimpersonate securitycontext="MyContext"
 username="pfoley"
 password="admin"
 type= "CF"
 throwonfailure= "Yes">

<cffile file="#readFile#" action="read" variable="text">
<cfoutput>

The file contains the following text:
#text#

</cfoutput>

</cfimpersonate>

Example of User Authentication and Authorization
The following sample pages illustrate how you might implement user security by
authenticating users and then allowing users to see or use only the resources that
they are authorized to use.

In this example, a user requests a page in an application named Orders, which is part
of a security context, also named Orders, that governs pages and resources for an
order-tracking application.

User security is generally handled in two steps:

1 The Application.cfm page checks to see whether the current user is
authenticated. If not, the page presents a login form and the user must submit a
username and password for authentication.

If the user passes the authentication test, ColdFusion passes the cfauth cookie to
carry the user’s authentication state to subsequent application pages governed
by this Application.cfm page.

2 Only authenticated users can access the requested application page for selecting
and updating customer orders in a database. This page checks to see which
resources the authenticated user is authorized to see and use.

Authenticating users in Application.cfm
The following example code for an Application.cfm page checks first to see whether
the current user is authenticated by checking to see whether a login form was
submitted. If the username and password can be authenticated for the current
security context, the user passes through and the requested page is served.

If the Application.cfm page does not receive the user’s login information from the
previous page, it prompts the user to provide a username and password. The user’s

364 Chapter 19 Application Security
response is checked against the list of valid users defined for the current security
context.

If the user passes the authentication step, the requested page appears. The
application uses the CGI variables script_name and query_string to keep track of
the originally requested page so that it can display that page after the user is
authenticated.

All pages governed by this Application.cfm page — those in the same directory as
Application.cfm and in its subtree — automatically invoke this authentication test.

Note
To use this code in your own Application.cfm page, change the application name
and security context name to match your application and security names.

Example: Application.cfm

<cfapplication name="Orders">

<cfif NOT IsAuthenticated()>
<!--- The user is not authenticated --->

<cfset showlogin="No">
<cfif IsDefined("form.username") AND IsDefined("form.password")>

<!--- The login form was submitted. Try authenticating --->
<cftry>

<cfauthenticate securityContext="Orders"
username="#form.username#"
password="#form.password#"
setCookie="YES">

<cfcatch type="security">
<!--- Security error in login occurred. Show login again --->

<h3>Invalid Login</h3>
<cfset showLogin="Yes">

</cfcatch>
</cftry>

<cfelse>
<!--- The login was not detected. Show login again--->

<cfset showlogin="Yes">
</cfif>

<!--- Show the login form --->
<cfif showlogin>

<!--- Recreate the url used to call the requested page --->
<cfset url="#cgi.script_name#">
<cfif cgi.query_string IS NOT "">

<cfset url=url & "?#cgi.query_string#">
</cfif>

Example of User Authentication and Authorization 365
<!--- The login form.
Submitting the form re-requests the originally requested page
using the recreated url --->
<cfoutput>

<form action="#url#" method="Post">
<table>

<tr>
<td>username:</td>
<td><input type="text" name="username"></td>

</tr>
<tr>

<td>password:</td>
<td><input type="password" name="password"></td>

</tr>
</table>
<input type="submit" value="Login">

</form>
</cfoutput>
<cfabort>

</cfif>
</cfif>

Checking for authentication and authorization
Inside application pages, you can use the IsAuthorized function to check whether
an authenticated user is authorized to access the protected resources, and then
display only the authorized resources.

The following sample page appears to users who pass the authentication test in the
previous Application.cfm page. It uses the IsAuthorized function to test whether
authenticated users are allowed to update or select data from a data source.

Example: orders.cfm

<!--- First, check whether a form button was submitted --->
<cfif IsDefined("Form.btnUpdate")>
<!--- Is user is authorized to update or select

information from the Orders data source? --->
<cfif IsAuthorized("DataSource", "Orders", "update")>

<cfquery name="AddItem" datasource="Orders">
INSERT INTO Orders (Customer, OrderID)
VALUES #Customer#, #OrderID#

</cfquery>
<cfoutput query="AddItem">

Authorization Succeeded. Order information added:
#Customer# - #OrderID#

</cfoutput>

<cfelse>
<cfabort showerror="You are not allowed to update order

information.">
</cfif>

366 Chapter 19 Application Security
</cfif>

<cfif IsAuthorized("DataSource", "Orders", "select")>
<cfquery name="GetList" datasource="Orders">

SELECT *
FROM Orders

</cfquery>
Authorization Succeeded. Order information follows:
<cfoutput query="GetList">

#Customer# - #BalanceDue#

</cfoutput>

<cfelse>
<cfabort showerror="You cannot view order information.">

</cfif>

Chapter 20

Using cfobject to Invoke
Component Objects
This chapter describes how to use the cfobject tag to invoke objects created by
component technologies, including COM/DCOM, CORBA, and Java objects.

Contents

• Component Object Overview... 368

• Invoking Component Objects .. 369

• Getting Started with COM/DCOM... 370

• Creating and Using COM Objects .. 374

• Getting Started with CORBA... 376

• Calling CORBA Objects ... 376

• Calling Java Objects... 378

368 Chapter 20 Using cfobject to Invoke Component Objects
Component Object Overview
This section gives you some basic information on objects supported in ColdFusion
and provides resources for further inquiry.

About COM
COM (Component Object Model) is a specification and a set of services defined by
Microsoft to enable component portability, reusability, and versioning. DCOM
(Distributed Component Object Model) is an implementation of COM for
distributed services, allowing access to components residing on a network.

COM objects can reside locally or on any network node. Currently, COM is
supported on Windows NT 3.51/4.0 and Windows 95/98.

Resources

To find out more about COM/DCOM, go toMicrosoft’s COM site, http://
www.microsoft.com/com.

About CORBA
CORBA (Common Object Request Broker Architecture) is a specification for a
distributed component object system defined by the Object Management Group
(OMG). In this model, an object is an encapsulated entity whose services are
accessed only through well-defined interfaces. The location and implementation of
each object is hidden from the client requesting the services. ColdFusion supports
CORBA 2.0 on both Windows and UNIX.

Resources

The OMG site, http://www.omg.com, is the main Web repository for CORBA
information.

About Java objects
Java objects include any Java class available in the class path specified on the
ColdFusion Administrator JVM and Java Settings page.

Invoking Component Objects 369
Invoking Component Objects
You use the cfobject tag to create an instance of an object. You use other
ColdFusion tags, such as cfset and cfoutput, to invoke properties (attributes), and
methods (operations) on the object. An object created by cfobject or returned by
other objects is implicitly released at the end of the ColdFusion page execution.

The examples in the following sections assume that the name attribute in the
cfobject tag specified the value “obj”, and that the object has a property called
“Property”, and methods called “Method1”, “Method2”, and “Method3”.

Using properties
Use the following coding practices to access properties.

To set a property:
<cfset obj.property = "somevalue">

To get a property:
<cfset value = obj.property>

Note that parentheses are not used on the right side of the equation for
property-gets.

Calling methods
Object methods usually take zero or more arguments. Arguments can be sent by
value ([in] arguments) or by reference ([out] and [in,out]). Arguments sent by
reference usually have their value changed by the object. Some methods return
values, while others may not.

Methods with no arguments:

<cfset retVal = obj.Method1()>

Note that parentheses are required for methods with no arguments.

Methods with one or more arguments:

<cfset x = 23>
<cfset retVal = obj.Method1(x, "a string literal")>

This method accepts one integer argument and one string argument.

Methods with reference arguments:

<cfset x = 23>
<cfset retVal = obj.Method2("x", "a string literal")>
<cfoutput> #x#</cfoutput>

Note the use of double-quotation marks (") to specify reference arguments. If the
object changes the value of "x", it now contains a value other than 23.

370 Chapter 20 Using cfobject to Invoke Component Objects
Calling nested objects
The current release of ColdFusion does not support nested (scoped) object calls. For
example, if an object method returns another object and you must invoke a property
or method on that object, use the following syntax:

<cfset objX = myObj.X>
<cfset prop = objX.Property>

(The syntax <cfset prop = myObj.X.Property> fails.)

Getting Started with COM/DCOM
ColdFusion is an automation (late-binding) COM client. As a result, the COM object
must support the IDispatch interface, and arguments for methods and properties
must be standard automation types. Because ColdFusion is a typeless language, it
uses the object’s type information to correctly set up the arguments on call
invocations. Any ambiguity in the object’s data types can lead to unexpected
behavior.

In ColdFusion, you should only use server-side COM objects, which do not have a
graphical user interface. If your ColdFusion application invokes an object with a
graphical interface in a window, the component might appear on the Web server
desktop, not on the user’s desktop. This can take up ColdFusion Server threads and
result in further Web server requests not being serviced.

ColdFusion can call Inproc, Local, or Remote COM objects. The attributes specified
in the cfobject tag determine which type of object is called.

Requirements for COM
To make use of COM components in your ColdFusion application, you need at least
the following items:

• Microsoft OLE/COM Object Viewer, available from Microsoft at http://
www.microsoft.com/com/resources/oleview.asp. This tool is handy for viewing
registered COM objects.

• The COM objects, which are typically DLL or EXE files, that you want to use in
your ColdFusion application pages. These components should allow late
binding, that is, they should implement the IDispatch interface. Object Viewer
lets you view an object’s class information so that you can properly define the
class attribute for the cfobject tag. It also displays the object’s supported
interfaces, so you can discover the properties and methods (for the IDispatch
interface) of the object.

Getting Started with COM/DCOM 371
Registering the object

after you acquire the object you want to use, you must register it with Windows in
order for ColdFusion (or any other program) to find it. Some objects might be
deployed with their own setup programs that register objects automatically, while
others might require manual registration.

You can register Inproc object servers (*.dll, *.ocx) manually by running the
regsvr32.exe utility using the following form:

regsvr32 c:\path\servername.dll

You typically register local servers (*.exe) either by starting them or specifying a
command line parameters, such as the following:

C:\pathname\servername.exe -register

Finding the component ProgID and methods
Your COM object should provide documentation explaining each of the
component’s methods and the ProgID. With this information, you are ready to use
the cfobject tag. If you do not have documentation, use the Object Viewer to view
the component’s interface.

Using the OLE/COM Object Viewer

The OLE/COM Object Viewer installation installs the executable by default as
\mstools\bin\oleview.exe. You use the Object Viewer to retrieve a COM object’s
Program ID as well as its methods and properties.

After have install a COM object, make sure you register it using the regsvr32.exe
utility. Otherwise, you cannot find the object in the Object Viewer. The Object Viewer
retrieves all COM objects and controls from the registry and presents the
information in a simple format, sorted into groups for easy viewing.

By selecting the category and then the component, you can see the Program ID of the
COM object you want to use. The Object Viewer also gives you access to options for
the operation of the object.

372 Chapter 20 Using cfobject to Invoke Component Objects
To view an object’s properties:

1 Open the Object Viewer and scroll to the object you want to examine.

2 Select and expand the object in the Object Viewer.

3 Right-click the object to view it.

Getting Started with COM/DCOM 373
If you view the TypeInfo, you see the object’s methods and properties. Some
objects do not have access to the TypeInfo area. This is determined when an
object is built and by the language used.

374 Chapter 20 Using cfobject to Invoke Component Objects
Creating and Using COM Objects
The following example uses cfobject to create the CDO (Collaborative Data
Objects) for NTS NewMail object to send mail.

<cfobject type="COM"
action="Create"

name="Mailer"
class="CDONTS.NewMail">

Note
CDO is installed by default on all Windows NT and 2000 operating systems that have
installed the Microsoft SMTP server. In Windows NT Server environments, the SMTP
server is part of the Option Pack 4 set up. In Windows 2000 Server and Workstation
environments, it is bundled with the operating system. For more information on
CDO for NTS, see http://msdn.microsoft.com/library/default.asp?URL=/library/
psdk/cdo/_olemsg_overview_of_cdo.htm.

You must create the component in ColdFusion before your application pages can
invoke any methods or assign any properties in the component. This sample CDO
for NTS NewMail component includes a number of methods and properties to
perform a wide range of mail-handling tasks. (In the OLE/COM Viewer, methods and
properties might be grouped together, so you might find it difficult to distinguish
between them at first.)

The CDO for NTS NewMail object includes the following properties:

Body [string]
Cc [String]
From [String]
Importance [Long]
Subject [String]
To [String]

You use these properties to define elements of the mail message you want to send.
The CDO for NTS NewMail object also includes a method with a number of optional
arguments to send messages:

Send()

Connecting to COM objects
The action attribute of cfobject provides two ways to connect to COM objects:

• Create method (cfobject action="Create") Takes a COM object, typically a
DLL, and instantiates it prior to invoking methods and assigning properties.

• Connect method (cfobject action="Connect") Links to an object that is
already running on the server, typically an executable.

You can also use the context attribute to specify the object context. If you do not
specify a context, ColdFusion uses the setting in the registry.

• InProc An in-process server object (typically a DLL) that is running in the same
process space as the calling process, such as ColdFusion.

Creating and Using COM Objects 375
• local An out-of-process server object (typically an exe file) that is running
outside the ColdFusion process space but running locally on the same server.

• remote An out-of-process server object (typically an exe file) that is running
remotely on the network. If you specify remote, you must also use the server
attribute to identify where the object resides.

Setting properties and invoking methods
The following example, using the sample Mailer COM object, shows how to assign
properties to the mail message you want to send and how to execute component
methods to handle mail messages.

In the example, form variables provide method parameters and properties, such as
the name of the recipient, the desired e-mail address, and so on.

<!--- First, create the object --->
<cfobject type="COM"

action="Create"
name="Mailer"
class="CDONTS.NewMail">

<!--- Then, use the form variables from the user entry form to
populate a number of properties necessary to create and send the
message. --->

<cfset Mailer.From = "#Form.fromName#">
<cfset Mailer.To = "#Form.to#">
<cfset Mailer.Subject = "#Form.subject#">
<cfset Mailer.Importance = 2>
<cfset Mailer.Body = "#Form.body#">
<cfset Mailer.Cc = "#Form.cc#">

<!--- Last, use the Send() method to send the message.
Invoking the Send() method destroys the object.--->

<cfset Mailer.Send()>

Note
Use the cftry and cfcatch tags to handle exceptions thrown by COM objects. For
more information on exception handling, see “Handling Exceptions in ColdFusion”
on page 204.

376 Chapter 20 Using cfobject to Invoke Component Objects
Getting Started with CORBA
The ColdFusion cfobject tag supports CORBA through the Dynamic Invocation
Interface (DII). As with COM, the object’s type information has to be available to
ColdFusion. This requirement implies that an IIOP-compliant Interface Repository
(IR) should be running on the network, and that the object’s Interface Definition
Language (IDL) specification must be registered in the IR.

ColdFusion 5 loads ORB runtime libraries dynamically using a connector.
Macromedia provides connectors for some of the popular ORBs. Each of these
connectors requires the ORB runtime libraries provided by the vendor. You must
license the libraries from the appropriate vendor before deploying them. You
manage the connectors on the CORBA Connectors page of the ColdFusion
Administrator Server tab. Using this page, you can add a connector and specify the
location of the ORB library. For more information, see Installing and Configuring
ColdFusion Server.

Calling CORBA Objects
In the cfobject tag, you must specify the following attributes when calling CORBA
objects:

• Set the type attribute to CORBA. If no type is specified, COM is assumed.

• The context attribute shows how the object reference is obtained. Set context to
IOR for a file containing the object’s unique Interoperable Object Reference or to
NameService.

• If you set the context attribute to IOR, set the class attribute to the file
containing the stringified version of the IOR. ColdFusion must be able to read
this IOR file at all times, so make it local to the server or on the network in an
accessible location.

• If you set the context attribute to NameService, the class attribute must include
a period-delimited name, such as MyCompany.Department.Dev. Currently,
ColdFusion can only resolve objects registered in a CORBA 3.0-compliant
naming service. Make sure that the naming service (NS) is brought-up with a
default naming context. The server implementing the object should bind to the
default context, and register the appropriate name. ColdFusion also binds to the
default context to resolve the name.

• Set the name attribute to the name that your application uses to call the object’s
operations and attributes.

For the complete cfobject syntax, see the CFML Reference.

Declaring structures and sequences
After you create the object, you can invoke attributes and operations on the object
using the syntax outlined in the previous sections. ColdFusion also supports the use
of complex types such as structures and sequences. For structures, use ColdFusion
structures; for sequences, use ColdFusion arrays.

Calling CORBA Objects 377
Example

Here is the IDL for an object:

struct SimpleStruct
{
 short s;
 long l;
 float d;
};

struct NestedStruct
{
 SimpleStruct f;
 char c;
 string s;
};

typedef sequence<long, 5> BLongSequence;

interface SomeObject {
 short SomeMethod(in NestedStruct inStruct, in BlongSequence inSeq);

};

Here is the applicable ColdFusion code:

<!—-- Declare a couple of structures --->
<cfset x = StructNew()>
<cfif IsStruct(x)>
<cfset temp=StructInsert(x,"s",3)>
<cfset temp=StructInsert(x,"l", 256)>
<cfset temp=StructInsert(x,"d", 93.45)>
</cfif>

<cfset NestedStruct = StructNew()>
<cfif IsStruct(NestedStruct)>
<cfset temp=StructInsert(NestedStruct,"f",x)>
<cfset temp=StructInsert(NestedStruct,"c", 'b')>
<cfset temp=StructInsert(NestedStruct,"s", " Test")>
</cfif>

<!—-- Declare a sequence --->
<cfset FixedSeq = ArrayNew(1)>

<cfloop index="LoopCount" from="1" TO="5">
<cfset FixedSeq [LoopCount] = #LoopCount#>
</cfloop>

<cfset retA=obj.SomeMethod(NestedStruct, FixedSeq)>

378 Chapter 20 Using cfobject to Invoke Component Objects
Exception handling
You can catch exceptions thrown by the CORBA object methods with the cftry and
cfcatch tags. However, you cannot extract information from the exception object.

Calling Java Objects
The cfobject tag can call any Java class that is available on the class path specified
on the ColdFusion Administrator JVM and Java Settings page. For example:

<cfobject type="Java" class="MyClass" name="myObj">

Although this tag loads the class, it does not create an instance object. Static
methods and fields are accessible after the call to cfobject.

To call the constructors explicitly, use the init method with the appropriate
arguments; for example:

<cfset ret=myObj.init(arg1, arg2)>

If you call a public method on the object without first calling the init method, the
result is an implicit call to the default constructor.

Arguments and return values can be any valid Java type; for example, simple arrays
and objects. ColdFusion does the appropriate conversions when strings are passed
as arguments, but not when they are received as return values.

The following sections provide more details on calling Java objects in ColdFusion.

Getting Started with Java
Java is a strongly typed language, unlike ColdFusion, which does not enforce data
types. As a result, there are some subtle considerations when calling Java methods.
The following sections create and use a Java class to illustrate how to use Java
effectively in ColdFusion pages.

Example: the Employee class

The Employee class has four data members: FirstName and LastName are public,
and Salary and JobGrade are private. The Employee class has three overloaded
constructors and a overloaded SetJobGrade method.

Save the following Java source code in the file Employee.java, compile it, and place
the resulting Employee.class file in a directory that is specified in the class path.

public class Employee {

public String FirstName;
public String LastName;
private float Salary;
private int JobGrade;

public Employee() {

Calling Java Objects 379
 FirstName ="";
 LastName ="";
 Salary = 0.0f;
 JobGrade = 0;
}

public Employee(String First, String Last) {
 FirstName = First;
 LastName = Last;
 Salary = 0.0f;
 JobGrade = 0;
}

public Employee(String First, String Last, float salary, int grade) {
 FirstName = First;
 LastName = Last;
 Salary = salary;
 JobGrade = grade;
}

public void SetSalary(float Dollars) {
 Salary = Dollars;
}

public float GetSalary() {
 return Salary;
}

public void SetJobGrade(int grade) {
 JobGrade = grade;
}

public void SetJobGrade(String Grade) {
 if (Grade.equals("CEO")) {
 JobGrade = 3;
 }
 if (Grade.equals("MANAGER")) {
 JobGrade = 2;
 }
 if (Grade.equals("DEVELOPER")) {
 JobGrade = 1;
 }
}

public int GetJobGrade() {
 return JobGrade;
}

}

380 Chapter 20 Using cfobject to Invoke Component Objects
Example: CFML page that uses the Employee class

Save the following text as JEmployee.cfm:

<html>
<body>
<cfobject action=create type=java class=Employee name=emp>
<!-- <cfset void = emp.init()> -->
<cfset emp.firstname="john">
<cfset emp.lastname="doe">
<cfset firstname=emp.firstname>
<cfset lastname=emp.lastname>
</body>

<cfoutput>
Employee name is #firstname# #lastname#

</cfoutput>
</html>

When you view the page in your browser, you should get the following output:

Employee name is john doe

Reviewing the code

The following table describes the CFML code and its function:

Java considerations

Keep the following points in mind when you write a ColdFusion page that uses a Java
class object:

• The Java class name is case sensitive. You must make sure that both the Java code
and the CFML code use Employee as the class name.

Code Description

<cfobject action=create
type=java class=Employee
name=emp>

Load an instance of the Employee Java
class named emp.

<!--- <cfset void=emp.init()>
--->

Do not call a constructor. ColdFusion
invokes the default constructor when it first
uses the class; in this case, when it
processes the next line.

<cfset emp.firstname="john">
<cfset emp.lastname="doe">

Set the public fields in the emp object to your
values.

<cfset firstname=emp.firstname>
<cfset lastname=emp.lastname>

Get the field values back from emp object.

<cfoutput>
Employee name is #firstname#

#lastname#
</cfoutput>

Display the retrieved values.

Calling Java Objects 381
• Java method and field names are not case sensitive. Similarly, ColdFusion
variables are not case sensitive. As a result, the sample code works even though
the CFML uses emp.firstname and emp.lastname, while the Java source code
uses FirstName and LastName for these fields.

• If you omit a call to the constructor (or, as in this example, comment it out)
ColdFusion automatically invokes the default constructor when it first uses the
class.

Using an alternate constructor

The following CFML page explicitly calls one of the alternate constructors for the
Employee object:

<html>
<body>

<cfobject action=create type=java class=Employee name=emp>
<cfset emp.init("John", "Doe",100000.00, 10)>
<cfset firstname=emp.firstname>
<cfset lastname=emp.lastname>
<cfset salary=emp.GetSalary()>
<cfset grade=emp.GetJobGrade()>
</body>

<cfoutput>
Employee name is #firstname# #lastname#
Employee salary and Job Grade #Salary# #grade#

</cfoutput>
</html>

In this example, the constructor takes four arguments; the first two are strings, and
third is a float, and the fourth is an integer.

Java and Cold Fusion Data Type Conversions
Cold Fusion is a typeless scripting language (that is, it does not use explicit data
types) while Java is strongly typed.

Under most situations, when the method names are not ambiguous, ColdFusion can
determine the required types. For example, ColdFusion strings are implicitly
converted to the Java String type. Similarly, if a Java object contains a doIt method
that expects a parameter of type int, and CFML is issuing a doIt call with a CFML
variable x, ColdFusion will converts the variable x to Java int type. However,
ambiguous situations can result from Java method overloading, where a class has
multiple implementations of the same method that differ only in their parameter
types.

The following sections describe how ColdFusion handles the unambiguous
situations, and how it provides you with the tools to handle ambiguous ones.

382 Chapter 20 Using cfobject to Invoke Component Objects
Default data type conversion

Whenever possible, ColdFusion matches Java types to ColdFusion types as listed in
the following table. ColdFusion does not support direct conversion of Date/Time
variables and structures.

Resolving ambiguous data types with the JavaCast function

You can overload Java methods so a class can have several identically named
methods. At runtime, the VM resolves the specific method to use based on the
parameters passed in the call and their types.

In the section “Example: the Employee class,” on page 378, the Employee class has
two implementations for the SetJobGrade method. One method takes a string
variable, the other an integer. If you write code such as the following, which
implementation to use is ambiguous:

<cfset emp.SetJobGrade(“1”)>

The “1” could be interpreted as string or as number, so there is no way to know
which method implementation to use. When a ColdFusion encounters such an
ambiguity, it throws a user exception.

The ColdFusion JavaCast function helps you resolve such issues by specifying the
Java type of a variable, as in the following line:

<cfset emp.SetJobGrade(JavaCast(“int”, “1”)>

The JavaCast function takes two parameters: a string representing the Java data and
the variable whose type your are setting. You can specify the following Java data
types: bool, int, long, float, double, and String.

For more information on the JavaCast function, see CFML Reference.

Exception Handling
Use the cftry and cfcatch tags to can catch exceptions thrown by Java objects. Use
the CFML GetException function to retrieve the Java exception object. The following
example demonstrates the GetException function.

CFML Java type

Character String

Numeric Int/long/float/double (depending on JavaCast)

Boolean Bool

Array Of Character Array of String

Array Of Numeric Array of Java (int/long/float/double)

The conversion rule depends on the Java Method
Signature (JavaCast does not help).

Array Of Java Objects Array of Java Objects

Calling Java Objects 383
Example: exception-throwing class

The following Java code defines the foo class that throws a sample exception. It also
defines a fooException class that extends the Java built-in Exception class and
includes a method for getting an error message.

public class foo {
public foo() {
}
public void doException() throws fooException {

throw new fooException("I am throwing a throw Exception ");
}

}

Class fooException

public class fooException extends Exception {
public String GetErrorMessage() {

return "Error Message from fooException";
}

}

Example: CFML Java exception handling code

The following CFML code calls the foo class doException method. The cfcatch block
handles the resulting exception by calling the CFML GetException function to
retrieve the Java exception object and then calling the object’s GetErrorMessage
method to get the error information.

<cfobject action=create type=java class=foo name=Obj>
<cftry>

<cfset VOID = Obj.doException() >
<cfcatch type="Any">

<cfset exception=GetException(Obj)>
<cfset message=exception.GetErrorMessage()>
<cfoutput>

The exception message is: #message#

</cfoutput>

</cfcatch>
</cftry>

Reviewing the code

The following table describes the code and its function:

Code Description

<cfobject action=create type=java
class=foo name=Obj>

Load an instance of the Java foo class
named Obj.

<cftry>
<cfset VOID = Obj.DoException() >

Inside a cftry block. call the doException
method of the Obj object. This method
throws an exception of the fooException
type.

384 Chapter 20 Using cfobject to Invoke Component Objects
Note that after you call GetException, the exception object is just like any other Java
component object, and you can call any methods on it.

The class loading mechanism
In ColdFusion prior to version 5, Java classes were loaded on demand and they were
not unloaded until the server restarted. This is the way a typical Java application
works and is appropriate for production systems. However, if you change a Java
method implementation, you must shut down the server and restart it before
ColdFusion can use the new class implementation.

In version 5, ColdFusion Server uses a custom class loader to load Java classes on the
fly, similar to Java Servlet engines. This enables you to modify Java method
implementations and use the new code from ColdFusion without restarting the
server.

ColdFusion 5 introduces the concept of dynamic load path, a directory that you can
specify on Cold Fusion Administrator JVM and Java Settings page. You deposit your
Java class files in this directory when you update the class implementation.
ColdFusion checks the class file time stamp when an object of the class is created. If
ColdFusion detects a new class file, it loads the class from that directory.

To use this feature, make sure that the Java implementation classes that you modify
are not in the general JVM class path. In addition, do not package the classes into jar
files or zip files. In all other ways, ColdFusion Class loader follows Java conventions
including those for package names and directory name mapping.

Suppose the directory “C:\classes” is the designated “hot” dynamic class path and
you have a class com.Allaire.Employee. You put the Employee.class file in the
following location:

C:\ classes\com\Allaire\Employee.class

The dynamic class-loading feature is meant for development uses, and incurs a
slight performance penalty associated with checking time stamps during disk IO
operations. For that reason, you do not use this feature in a production environment
where there might be high volume of traffic.

<cfcatch type="Any"> Catch any exceptions and handle them in
this block.

<cfset
exception=GetException(Obj)>
<cfset
message=exception.GetERrorMessage(
)>

Get the exception data by calling the CFML
GetException function and passing it the
Obj object. Set the message variable to the
string returned by the exception object’s
GetErrorMessage method.

<cfoutput>

The exception message is:

#message#

</cfoutput>

Output the message string.

Code Description

Calling Java Objects 385
To disable automatic class loading, put all classes in the normal Java class path.
Classes located on the Java class path are loaded once per server lifetime and can
only be reloaded by stopping and restarting ColdFusion Server.

A more complex Java example
The following code provides a more complete example of using Java with cfobject.
The Example class manipulates integer, float, array, Boolean, and Example object
types.

The Example class

The following Java code defines the Example class. The Java class Example has one
public integer member, mPublicInt. Its constructor initializes mPublicInt to 0 or an
integer argument. The class has the following public methods:

public class Example {
 public int mPublicInt;

 public Example() {
 mPublicInt = 0;
 }

 public Example(int IntVal) {
 mPublicInt = IntVal;
 }

 public String ReverseString(String s) {
 StringBuffer buffer = new StringBuffer(s);
 return new String(buffer.reverse());
 }

 public String[] ReverseStringArray(String [] arr) {

Method Description

ReverseString Reverses the order of a string.

ReverseStringArray Reverses the order of elements in an array of strings.

Add Overloaded: Adds and returns two integers or floats or
adds the mPublicInt members of two Example class
objects and returns an Example class object.

SumArray Returns the sum of the elements in an integer array.

SumObjArray Adds the values of the mPublicInt members of an array of
Example class objects and returns an Example class
object.

ReverseArray Reverses the order of an array of integers.

Flip Switches a boolean value.

386 Chapter 20 Using cfobject to Invoke Component Objects
 String[] ret = new String[arr.length];
 for (int i=0; i < arr.length; i++) {
 ret[arr.length-i-1]=arr[i];
 }
 return ret;
 }

 public int Add(int a, int b) {
 return (a+b);
 }

 public float Add(float a, float b) {
 return (a+b);
 }

 public Example Add(Example a, Example b) {
 return new Example(a.mPublicInt + b.mPublicInt);
 }

 static public int SumArray(int[] arr) {
 int sum=0;
 for (int i=0; i < arr.length; i++) {
 sum += arr[i];
 }
 return sum;
 }

 static public Example SumObjArray(Example[] arr) {
 Example sum= new Example();
 for (int i=0; i < arr.length; i++) {
 sum.mPublicInt += arr[i].mPublicInt;
 }
 return sum;
 }

 static public int[] ReverseArray(int[] arr) {
 int[] ret = new int[arr.length];
 for (int i=0; i < arr.length; i++) {
 ret[arr.length-i-1]=arr[i];
 }
 return ret;
 }

 static public boolean Flip(boolean val) {
 System.out.println("calling flipboolean");
 return val?false:true;
 }
}

Calling Java Objects 387
The useExample CFML Page

The following useExample.cfm page uses the Example class to manipulate numbers,
strings, Booleans, and Example objects. Note the use of the JavaCast CFML function
to ensure that CFML variables convert into the appropriate Java data types.

<html>
<head>

<title>CFOBJECT and Java Example</title>
</head>
<body>

<!--- Create a reference to an Example object --->
<cfobject action=create type=java class=Example name=obj>
<!--- Create the object and initialize its public member to 5 --->
<cfset x=obj.init(JavaCast("int",5))>

<!--- Create an array and populate it with string values,
then use the Java object to reverse them. --->

<cfset myarray=ArrayNew(1)>
<cfset myarray[1]="First">
<cfset myarray[2]="Second">
<cfset myarray[3]="Third">
<cfset ra=obj.ReverseStringArray(myarray)>

<!--- Display the results --->
<cfoutput>

original array element 1: #myarray[1]#

original array element 2: #myarray[2]#

original array element 3: #myarray[3]#

after reverse element 1: #ra[1]#

after reverse element 2: #ra[2]#

after reverse element 3: #ra[3]#

</cfoutput>

<!--- Use the Java object to flip a Boolean value, reverse a string,
add two integers, and add two float numbers --->

<cfset c=obj.Flip(true)>
<cfset StringVal=obj.ReverseString("This is a test")>
<cfset IntVal=obj.Add(JavaCast("int",20),JavaCast("int",30))>
<cfset FloatVal=obj.Add(JavaCast("float",2.56),JavaCast("float",3.51))>

<!--- Display the results --->
<cfoutput>

StringVal: #StringVal#

IntVal: #IntVal#

FloatVal: #FloatVal#

</cfoutput>

388 Chapter 20 Using cfobject to Invoke Component Objects
<!--- Create a two-element array, sum its values,
and reverse its elements --->

<cfset intarray=ArrayNew(1)>
<cfset intarray[1]=1>
<cfset intarray[2]=2>
<cfset IntVal=obj.sumarray(intarray)>
<cfset reversedarray=obj.ReverseArray(intarray)>

<!--- Display the results --->
<cfoutput>

IntVal1 :#IntVal#

array1: #reversedarray[1]#

array2: #reversedarray[2]#

</cfoutput>

<!--- Create a ColdFusion array containing two Example objects.
Use the SumObjArray method to add the objects in the array
Get the public member of the resulting object--->

<cfset oa=ArrayNew(1)>
<cfobject action=create type=java class=Example name=obj1>
<cfset VOID=obj1.init(JavaCast("int",5))>
<cfobject action=create type=java class=Example name=obj2>
<cfset VOID=obj2.init(JavaCast("int",10))>
<cfset oa[1] = obj1>
<cfset oa[2] = obj2>
<cfset result = obj.SumObjArray(oa)>
<cfset intval = result.mPublicInt>

<!--- Display the results --->
<cfoutput>

intval1: #intval#

</cfoutput>

</body>
</html>

Chapter 21

Building Custom CFXAPI Tags
Sometimes, the best approach is to develop elements of your application by building
executables to run with ColdFusion. Perhaps the application requirements go
beyond what is currently feasible in CFML. Perhaps you can improve application
performance for certain types of processing.

To meet these types of requirements, you can use the ColdFusion Extension
Application Programming Interface (CFXAPI) to access ColdFusion functions.

This chapter documents custom tag development using Java or C++, however, it is
also possible to develop tags in Borland’s Delphi.

Contents

• What Are CFX Tags?... 390

• Before You Begin Developing CFX Tags in Java... 391

• Writing a Java CFX ... 393

• ZipBrowser Example ... 397

• Approaches to Debugging Java CFXs... 398

• Customizing and Configuring Java .. 392

• Developing CFX Tags in C++ .. 401

• Registering CFXs.. 404

• Distributing CFX Tags ... 405

390 Chapter 21 Building Custom CFXAPI Tags
What Are CFX Tags?
CFX tags are custom tags written against the ColdFusion Extension Application
Programming Interface. Generally, you create a CFX if you want to do something that
is not possible in CFML, or if you want to improve performance of a repetitive task.
CFXs can do the following:

• Handle any number of custom attributes.

• Use and manipulate ColdFusion queries for custom formatting.

• Generate ColdFusion queries for interfacing with non-ODBC based information
sources.

• Dynamically generate HTML to be returned to the client.

• Set variables within the ColdFusion application page from which they are called.

• Throw exceptions that result in standard ColdFusion error messages.

You can build CFXs using C++ or Java.

Note
To use a CFX, you must register it in the ColdFusion Administrator, as described in
“Registering CFXs” on page 404.

Before You Begin Developing CFX Tags in Java 391
Before You Begin Developing CFX Tags in Java
While implementing CFX tags in Java is easy, you should consider the information in
this section before you begin developing them.

Sample Java CFXs
Before you begin developing a CFX tag in Java, you might want to study sample CFX
tags. You can find the Java source files for the examples on Windows in the
cfx\java\distrib\examples subdirectory of the main installation directory. On UNIX
systems, the files are located in the cfx/java/examples directory. The example tags
are as follows:

• HelloColdFusion Prints a personalized greeting. Demonstrates the minimal
implementation required to create a CFX.

• ZipBrowser Retrieves the contents of a zip archive. Demonstrates how to
generate a ColdFusion query and return it to the calling page.

• ServerDateTime Retrieves the date and time from a network server.
Demonstrates attribute validation, using numeric attributes, and setting
variables within the calling page.

• OutputQuery Outputs a ColdFusion query in an HTML table. Demonstrates
how to handle a ColdFusion query as input, throw exceptions, and generate
dynamic output.

• HelloWorldGraphic Generates a “Hello World!” graphic in JPEG format.
Demonstrates how to dynamically create and return graphics from a Java CFX.

Setting up your development environment to develop CFXs in
Java

You can use a wide range of Java development environments, including the Java
Development Kit (JDK) from Sun to build Java CFXs. You can download the JDK from
Sun http://java.sun.com/j2se.

Although you can use the basic JDK, the recommended approach is to use one of the
commercial Java IDEs that provide an integrated environment for development,
debugging, project management, and access to documentation.

Configuring the class path

To configure your development environment to build Java CFXs, you must ensure
that the supporting classes are visible to your Java compiler. These classes are
located in the cfx.jar archive, located in the Java/classes subdirectory of your
ColdFusion installation directory. Consult your Java development tool’s
documentation to determine how to configure the compiler class path for your
particular environment.

392 Chapter 21 Building Custom CFXAPI Tags
The classes directory created by the ColdFusion setup program serves two
purposes:

• It contains the supporting classes required for developing and deploying Java
CFXs. This is the com.allaire.cfx package located in the cfx.jar archive.

• It supports a feature that allows Java CFXs located in the directory to be reloaded
every time they are changed. Although this is not the default behavior for other
Java classes, this behavior is very useful during an iterative development and
testing cycle.

When you create new Java CFXs, you should develop and deploy them in the
classes directory. Following this guideline will dramatically simplify your
development, debugging, and testing processes.

Once you are finished with development and testing, you can then deploy your Java
CFX anywhere on the class path visible to the ColdFusion embedded JVM. See
“Customizing and Configuring Java” for more details on customizing the class path.

Customizing and Configuring Java
You use the JVM and Java Settings page on the ColdFusion Administrator Server tab
to customize your Java development environment, such as by customizing the class
path and Java system properties, or specifying an alternate Java Virtual Machine
(JVM).

Writing a Java CFX 393
Writing a Java CFX
To create a Java CFX, you create a class that implements the CustomTag interface.
This interface contains one method, processRequest, which is passed Request and
Response objects that are then used to do the work of the tag.

To create a Java CFX:

1 Create a new source file in your editor.

2 Enter your code. The following code shows how t o create a very simple Java CFX
named SimpleJavaCFX that writes a text string back to the calling page:

import com.allaire.cfx.* ;

public class HelloColdFusion implements CustomTag
{
 public void processRequest(Request request, Response response)

throws Exception
 {

String strName = request.getAttribute("NAME") ;
response.write("Hello, " + strName) ;

 }
}

3 Save the file as HelloColdFusion.java in the classes subdirectory.

4 Compile the java source file into a class file using the Java compiler. If you are
using the command-line tools bundled with the JDK, use the following command
line, which you execute from within the classes directory:

javac -classpath cfx.jar HelloColdFusion.java

Note
The previous command works only if the Java compiler (javac.exe) is in your
path. If it is not in your path, specify the fully qualified path; for example,
c:\jdk12\bin\javac on Windows NT or /usr/java/bin/javac on UNIX.

If you receive errors during compilation, check the source code to make sure you
entered it correctly. If no errors occur, you just successfully wrote your first Java CFX.

As you can see, implementing the basic CustomTag interface is straightforward. This
is all a Java class must do to be callable from a CFML page.

Processing requests
Implementing a Java CFX requires interaction with the Request and Response
objects passed to the processRequest method. In addition, CFXs that need to work
with ColdFusion queries also interface with the Query object. The com.allaire.cfx
package, located in the classes/cfx.jar archive, contains the Request, Response, and
Query objects.

394 Chapter 21 Building Custom CFXAPI Tags
This section provides an overview of these object types. For a complete example Java
CFX that uses Request, Response, and Query objects, see the “ZipBrowser Example”
on page 397.

Request object

The Request object is passed to the processRequest method of the CustomTag
interface. It provides methods for retrieving attributes, including queries, passed to
the tag and for reading global tag settings.

Response object

The Response object is passed to the processRequest method of the CustomTag
interface. It provides methods for writing output, generating queries, and setting
variables within the calling page.

Query object

The Query object provides an interface for working with ColdFusion queries. It
includes methods for retrieving name, row count, and column names and methods
for getting and setting data elements.

Method Description

attributeExists Checks whether the attribute was passed to this tag.

getAttribute Retrieves the value of the passed attribute.

getIntAttribute Retrieves the value of the passed attribute as an integer.

getAttributeList Retrieves a list of all attributes passed to the tag.

getQuery Retrieves the query that was passed to this tag, if any.

getSetting Retrieves the value of a global custom tag setting.

debug Checks whether the tag contains the debug attribute.

Method Description

write Outputs text into the calling page.

setVariable Sets a variable in the calling page.

addQuery Adds a query to the calling page.

writeDebug Outputs text into the debug stream.

Method Description

getName Retrieves the name of the query.

getRowCount Retrieves the number of rows in the query.

getColumns Retrieves the names of the query columns.

getData Retrieves a data element from the query.

Writing a Java CFX 395
For detailed reference information on each of these interfaces, see the CFML
Reference.

Loading Java CFX classes
Each Java CFX class has its own associated ClassLoader that loads it and any
dependent classes also located in the classes directory. When Java CFXs are
reloaded after a change, a new ClassLoader is associated with the freshly loaded
class. This special behavior is similar to the way Java servlets are handled by the Java
Web server and other servlet engines, and is required in order to implement
automatic class reloading.

However, this behavior can cause subtle problems when you are attempting to
perform casts on instances of classes loaded from a different ClassLoader. The cast
fails even though the objects are apparently of the same type. This is because the
object was created from a different ClassLoader and is therefore technically not the
same type.

To solve this problem, only perform casts to class or interface types that are loaded
using the standard Java class path, that is, classes not located in the classes
directory. This works because classes loaded from outside the classes directory are
always loaded using the system ClassLoader, and therefore, have a consistent
runtime type.

Automatic class reloading
You can determine how the server treats changed Java CFX class files by specifying
the reload attribute when you use a CFX tag in your CFML page. The following table
describes the allowable values for the reload attribute:

addRows Adds a new row to the query.

setData Sets a data element within the query.

Method Description

Value Description

Auto Automatically reload Java CFX and dependent classes within the
classes directory whenever the CFX class file changes. Does not
reload if a dependent class file changes but the CFX class file does not
change.

Always Always reload Java CFX and dependent classes within the classes
directory. Ensures a reload even if a dependent class changes, but the
CFX class file does not change.

Never Never reload Java CFX classes. Load them once per server lifetime.

396 Chapter 21 Building Custom CFXAPI Tags
The default value is reload="Auto". This is appropriate for most applications. Use
reload="Always" during the development process when you must ensure that you
always have the latest class files, even when only a dependent class changed. Use
reload="Never" to increase performance by omitting the check for changed classes.

Note
The reload attribute applies only to class files located in the classes directory. The
ColdFusion server loads classes located on the Java class path once per server
lifetime. You must stop and restart ColdFusion Server to reload these classes. For
information on loading Java class files, see “The class loading mechanism” on page
384.

Life cycle of Java CFXs
A new instance of the Java CFX object is created for each invocation of the Java CFX
tag. This means that it is safe to store per-request instance data within the members
of your CustomTag object. To store data and/or objects that are accessible to all
instances of your CustomTag, use static data members. If you do so, you must
ensure that all accesses to the data are thread-safe.

Calling the CFX from a ColdFusion page
You call Java CFXs from within ColdFusion pages by using the name of the CFX that
is registered on the ColdFusion Administrator CFX tags page. This name should be
the prefix cfx_ followed by the class name (without the .class extension). The
following CFML page calls the HelloColdFusion custom tag:

<html>
<body>

<cfx_HelloColdFusion NAME="Les">
</body>
</html>

To test the CFX:

1 Create a new source file in your editor and enter the preceding CFML code.

2 Save the file in a directory configured to serve ColdFusion pages. For example,
you can save the file as C:\inetpub\wwwroot\cfdocs\testjavacfx.cfm on Windows
NT or /home/docroot/cfdocs/testjavacfx.cfm on UNIX.

3 If you have not already done so, register the CFS in the ColdFusion
Administrator, as described in “Registering CFXs” on page 404.

4 Request the page from your Web browser using the appropriate URL; for
example:

http://localhost/cfdocs/testjavacfx.cfm

ZipBrowser Example 397
ColdFusion processes the page and returns a page that displays the text “Hello,
Robert.” If an error is returned instead, check the source code to make sure you have
entered it correctly.

ZipBrowser Example
The following example illustrates the use of the Request, Response, and Query
objects. The example uses the java.util.zip package to implement a Java CFX
called ZipBrowser, which is a zip file browsing tag.

The tag’s archive attribute specifies the fully qualified path of the zip archive to
browse. The tag’s name attribute must specify the query to return to the calling page.
The returned query contains three columns: Name, Size, and Compressed.

For example, to query an archive at the path C:\logfiles.zip for its contents and
output the results, you use the following CFML code:

<cfx_ZipBrowser
 archive="C:\logfiles.zip"
 name="LogFiles" >

<cfoutput query="LogFiles">
#Name#, #Size#, #Compressed#

</cfoutput>

The Java implementation of ZipBrowser is as follows:

import com.allaire.cfx.* ;
import java.util.Hashtable ;
import java.io.FileInputStream ;
import java.util.zip.* ;

public class ZipBrowser implements CustomTag
{
 public void processRequest(Request request, Response response)
 throws Exception
 {
 // validate that required attributes were passed
 if (!request.attributeExists("ARCHIVE") ||
 !request.attributeExists("NAME"))
 {
 throw new Exception(
 "Missing attribute (ARCHIVE and NAME are both " +
 "required attributes for this tag)") ;
 }

 // get attribute values
 String strArchive = request.getAttribute("ARCHIVE") ;
 String strName = request.getAttribute("NAME") ;

// create a query to use for returning the list of files
 String[] columns = { "Name", "Size", "Compressed" } ;
 int iName = 1, iSize = 2, iCompressed = 3 ;
 Query files = response.addQuery(strName, columns) ;

398 Chapter 21 Building Custom CFXAPI Tags

// read the zip file and build a query from its contents

 ZipInputStream zin =
 new ZipInputStream(new FileInputStream(strArchive)) ;
 ZipEntry entry ;
 while ((entry = zin.getNextEntry()) != null)
 {
 // add a row to the results
 int iRow = files.addRow() ;

 // populate the row with data
 files.setData(iRow, iName,
 entry.getName()) ;
 files.setData(iRow, iSize,
 String.valueOf(entry.getSize())) ;
 files.setData(iRow, iCompressed,
 String.valueOf(entry.getCompressedSize())) ;

 // finish up with entry
 zin.closeEntry() ;
 }

 // close the archive
 zin.close() ;
 }
}

Approaches to Debugging Java CFXs
Java CFXs are not standalone applications that run in their own process like typical
Java applications. Rather, they are created and invoked from an existing process —
ColdFusion Server. This makes debugging Java CFXs more difficult because you
cannot use an interactive debugger to debug Java classes that have been loaded by
another process.

To overcome this limitation, you can use one of two techniques:

• Debug the CFX while it is running within ColdFusion Server by outputting debug
information as needed.

• Debug the request in an interactive debugger offline from ColdFusion Server
using the special com.allaire.cfx debugging classes.

Outputting debug information
Before using interactive debuggers became the norm, programmers typically
debugged their programs by inserting output statements in their programs to
indicate information such as variable values and control paths taken. Often, when a
new platform emerges, this technique comes back into vogue while programmers
wait for more sophisticated debugging technology to develop for the platform.

Approaches to Debugging Java CFXs 399
If you need to debug a Java CFX while running against a live production server, this is
the technique you must use. In addition to outputting debug text using the
Response.write method, you can also call your Java CFX tag with the debug="On"
attribute. This attribute flags the CFX that the request is running in debug mode and
therefore should output additional extended debug information. For example, to call
the HelloColdFusion CFX in debug mode, use the following CFML code:

<cfx_HelloColdFusion" name="Robert" debug="On">

To determine whether a CFX is invoked with the debug attribute, use the
Request.debug method. To write debug output in a special debug block after the tag
finishes executing, use the Response.writeDebug method. For details on using these
methods, see the CFML Reference.

Using the debugging classes
To develop and debug Java CFXs in isolation from the ColdFusion Server, you use
three special debugging classes that are included in the com.allaire.cfx package.
These classes enable you to simulate a call to the processRequest method of your
CFX within the context of the interactive debugger of a Java development
environment. The three debugging classes are:

• DebugRequest An implementation of the Request interface that enables you to
initialize the request with custom attributes, settings, and a query.

• DebugResponse An implementation of the Response interface that enables you
to print the results of a request once it has completed.

• DebugQuery An implementation of the Query interface that enables you to
initialize a query with a name, columns, and a data set.

To use the debugging classes:

1 Create a main method for your Java CFX class. You use this method as the testbed
for your CFX.

2 Within the main method, initialize a DebugRequest and DebugResponse, and a
DebugQuery if appropriate, with the attributes and data you want to use for your
test.

3 Create an instance of your Java CFX and call its processRequest method, passing
in the DebugRequest and DebugResponse objects.

4 Call the DebugResponse.printResults method to output the results of the
request, including content generated, variables set, queries created, and so forth.

After you implement a main method as described previously, you can debug your
Java CFX using an interactive, single-step debugger. Just specify your Java CFX class
as the main class, set breakpoints as appropriate, and begin debugging.

400 Chapter 21 Building Custom CFXAPI Tags
Debugging classes example

The following example demonstrates the use of the debugging classes:

import java.util.Hashtable ;
import com.allaire.cfx.* ;

public class OutputQuery implements CustomTag
{
 // debugger testbed for OutputQuery
 public static void main(String[] argv)
 {
 try
 {
 // initialize attributes
 Hashtable attributes = new Hashtable() ;
 attributes.put("HEADER", "Yes") ;
 attributes.put("BORDER", "3") ;

 // initialize query

 String[] columns =
 { "FIRSTNAME", "LASTNAME", "TITLE" } ;

 String[][] data = {
 { "Stephen", "Cheng", "Vice President" },
 { "Joe", "Berrey", "Intern" },
 { "Adam", "Lipinski", "Director" },
 { "Lynne", "Teague", "Developer" } } ;

 DebugQuery query =
 new DebugQuery("Employees", columns, data) ;

 // create tag, process debug request, and print results
 OutputQuery tag = new OutputQuery() ;
 DebugRequest request = new DebugRequest(attributes, query) ;
 DebugResponse response = new DebugResponse() ;
 tag.processRequest(request, response) ;
 response.printResults() ;
 }
 catch(Throwable e)
 {
 e.printStackTrace() ;
 }
 }

 public void processRequest(Request request) throws Exception
 {
 // ...code for processing the request...
 }
}

Developing CFX Tags in C++ 401
Developing CFX Tags in C++
The following sections provide some background to help you develop CFX tags in
C++.

Sample C++ CFXs
Before you begin development of a CFX tag in C++, you might want to study the two
CFX tags that are included to give you additional insight into working with the
CFXAPI. The two example tags are as follows:

• CFX_DIRECTORYLIST Queries a directory for the list of files it contains.

• CFX_NTUSERDB (Windows NT only) Allows addition and deletion of NT users.

On Windows NT, these tags are located in the \cfusion\cfx\examples directory. On
UNIX, look in /<installdirectory>/coldfusion/cfx/examples.

Setting up your C++ development environment
The following compliers generate valid CFX code for UNIX platforms:

Before you can use your C++ compiler to build custom tags, you must enable the
compiler to locate the CFXAPI header file, cfx.h. On Windows NT, you do this by
adding the CFXAPI Include directory to your list of global include paths. On
Windows, this directory is \cfusion\cfx\include. On UNIX it is /opt/coldfusion/cfx/
include. On UNIX, you will need -I <includepath> on your compile line (see the
Makefile for the directory list example in the cfx/examples directory).

Using the Tag Wizard to create CFXs in C++
On Windows NT, you can get a start in developing CFXs by using the ColdFusion Tag
Wizard. To use the wizard, you must install the CFXAPI Tag Development Kit (it is
installed by default), and the setup routine must detect Microsoft Visual C++ on the
system.

The wizard generates a DLL file with a basic tag structure containing a single
procedure. By modifying and testing this tag, you can quickly learn how to work
within the API.

Platform Compiler

Solaris Sun C++ compiler 5.0 or higher (gcc does not work)

Linux RedHat 6.2 gcc/egcs 1.1.2 compiler

HPUX 11 HP aCC C++ compiler

402 Chapter 21 Building Custom CFXAPI Tags
To build a CFX tag:

1 In Visual C++, select File > New, and then click the Projects tab.

2 Select ColdFusion Tag Wizard and enter a tag name of the form CFX_MyNewTag in
the Project name box. Click OK to open the wizard.

3 Enter the new tag name as the name of the custom tag.

4 (Optional) Add text that will appear as comments in the tag’s code.

5 Select an MFC usage option and click Finish to generate the code.

6 In Visual C++, select Build > Build CFX_MyNewTag to create the DLL file.

The next step is to make ColdFusion aware of the new tag by registering it. See
“Registering CFXs” on page 404.

Compiling C++ CFXs
CFX tags built on Windows NT and UNIX must be thread safe. Compile CFXs for
Solaris with the -mt switch on the Sun compiler.

Implementing C++ CFX tags
CFX tags built in C++ use the tag request object, represented by the C++ class
CCFXRequest. This object represents a request made from an application page to a
custom tag. A pointer to an instance of a request object is passed to the main
procedure of a custom tag. The methods available from the request object allow the
custom tag to accomplish its work. For a detailed description of the CFXAPI classes
and members, see the see CFML Reference.

Debugging C++ CFXs
After you configure a debug session, you can run your custom tag from within the
debugger, set breakpoints, single-step, and so on.

On Windows NT

You can easily debug custom tags within the Visual C++ environment. To debug a
tag, open the Build Settings dialog box and click the Debug tab. Set the Executable
for debug session setting to the full path to the ColdFusion Engine (such as,
c:\cfusion\bin\cfserver.exe) and set the program arguments setting to -DEBUG.

Developing CFX Tags in C++ 403
On UNIX

Use the following debuggers and settings for the supported UNIX operating systems:

Shut down ColdFusion using the stop script. Set the environment variables as they
are set in the start script. You can then run the cfserver executable under the dbx
debugger and set breakpoints in your CFX code. You might need to set a breakpoint
in main so the debugger loads the symbols for your CFX before you can set
breakpoints in your code.

OS Debugger Other OS-specific requirements

Solaris dbx The environment variables must include
LD_LIBRARY_PATH and CFHOME.
Use “stop in main” to set a breakpoint in main.

Linux gdb The environment variables must include
LD_LIBRARY_PATH and CFHOME.
Use “break main” to set a breakpoint in main.

HP-UX DDE The environment variables must include SHLIB_PATH and
CFHOME.
Use “stop in main” to set a breakpoint in main.

404 Chapter 21 Building Custom CFXAPI Tags
Registering CFXs
To use a CFX tag in your ColdFusion applications, first register it in the Extensions,
CFX Tags page in the ColdFusion Administrator.

To register a Java CFX:

1 On the ColdFusion Administrator Server tab, select Extensions > CFX Tags to
opent the CFX Tags page.

2 Click the Register Java CFX button.

3 Enter the tag name (for example cfx_MyNewTag).

4 Enter the class name (without the .class extension).

5 (Optional) Enter a description.

6 Click Submit Changes.

You can now call the tag from a ColdFusion page.

To register a C++ CFX:

1 On the ColdFusion Administrator Server tab, select Extensions > CFX Tags to
opent the CFX Tags page.

2 Click the Register C++ CFX button.

3 Enter the Tag name (for example cfx_MyNewTag).

4 If the Server Library .dll field is empty, enter the file path.

5 Accept the default Procedure entry.

6 Clear the Keep library loaded box while developing the tag.

When the tag is ready for production use, you can select this option to keep the
DLL in memory for improved performance.

7 (Optional), Enter a description.

8 Click Submit Changes.

You can now call the tag from a ColdFusion page.

On Windows NT only, the Visual C++ Custom Tag Wizard automatically registers
custom tags so that they can be tested and debugged.

To change a CFX tag:

1 Click the tag that you want to change in the Registered CFX Tags list.

2 Make changes as needed on the Edit CFX Tag page.

3 Click Submit Changes.

Distributing CFX Tags 405
To delete a CFX tag:
• Click the Delete Applet (right-most) icon in the Controls column of the

Registered CFX Tags list for the tag you want to delete.

On Windows NT only, the Visual C++ Custom Tag Wizard automatically registers
custom tags so that they can be tested and debugged.

Distributing CFX Tags
If you are distributing a custom tag, you can automatically register it during the
setup process by writing the registration entries directly into the registry. The
following table lists the registry entries.

The following table lists the registry entries for Java:

The following table lists the registry entries for C++:

You can create a file containing this information by using the Windows Regedit
utility to export the registry entry from a machine on which the custom tag is already
installed.

On Windows NT, use Regedit to import custom tags to the registry. On UNIX you
must edit the registry data file, located in /opt/coldfusion/registry/cf.registry.

Entry Value

Hive HKEY_LOCAL_MACHINE

Key SOFTWARE\Allaire\ColdFusion\CurrentVersion\CustomTags\
TagName

ClassName The name of the class to call.

Description A description of the tag’s functionality for browsing by end users.

Entry Value

Hive HKEY_LOCAL_MACHINE

Key SOFTWARE\Allaire\ColdFusion\CurrentVersion\CustomTags\
TagName

LibraryPath The full path to the DLL (Windows NT) or shared object (UNIX)
that implements the custom tag.

ProcedureName The name of the procedure to call for processing tag requests.

Description A description of the tag’s functionality for browsing by end users.

CacheLibrary Indicates whether to keep the DLL or shared object loaded in
RAM (1 or 0).

406 Chapter 21 Building Custom CFXAPI Tags
To import a Java custom tag:

1 Export the custom tag’s registry entry by using the Regedit utility. This creates a
file similar to the following:

REGEDIT4

[HKEY_LOCAL_MACHINE\SOFTWARE\Allaire\ColdFusion\CurrentVer
sion\ CustomTags\CFX_TEST]
"ClassName"="ProcessTagRequest"
"Description"="Sample CFX tag."

2 In the install script, import the registry entry by including the following
command in the install script:

regedit importfilename

To import a C++ custom tag:

1 Export the custom tag’s registry entry by using the Regedit utility. This creates a
file similar to the following:

REGEDIT4

[HKEY_LOCAL_MACHINE\SOFTWARE\Allaire\ColdFusion\CurrentVer
sion\ CustomTags\CFX_TEST]
"LibraryPath"="C:\\cfusion\\cfx\\CFX_TEST\\test.dll"
"ProcedureName"="ProcessTagRequest"
"Description"="Sample CFX tag."
"CacheLibrary"="1"

2 In the install script, import the registry entry by including the following
command in the install script:

regedit importfilename

Index

Special processing 8 ArrayNew CFML function 119

#,using 14
, in search expressions 288

A
Accessing

Client variables 225
collections 298
data sources 21
generated content 187

Action pages 45
Active Server Pages 345
Adding

data elements to structures 127
data sources 22
elements to an array 119

Administrative lock
management 236

Advanced security,
implementing 358

Ancestor tags
data access 182
definition 180

AND operator
SQL, definition 27
SQL, using 52

Appearance, of graphs 67
Application 215
Application framework

about 214
approaches to 217
custom error pages 199
description 214
mapping 216

Application pages
creating 10
description 6, 10
errors 199
naming 4, 16

saving 11
viewing 11

Application scope 215
Application servers, data exchange

across 347
Application variables

description 215
lifetime of 231
listing 231
time-outs 231
usage tips 231
using 230

Application.cfm file
application security 363
application-level settings 219
creating 219
custom functions in 254
processing 216

Application-level data, and
WDDX 347

Application-level settings 214
Applications

development
considerations 16

development process 10
directory structure 216, 217
error handling in 215
naming 219
storing variables 230

Area graphs, setting
appearance 74

Arguments
custom function 251
optional 251
passing 252

ArrayAppend CFML function 119
ArrayDeleteAt CFML function 118
ArrayInsertAt CFML function 119

ArrayPrepend CFML function 119
Arrays

2-dimensional 116
3-dimensional 116
adding data to 118
adding elements to 118, 119
associative 125
creating 118
description 116
dimensions 117
elements 117
functions 124
index 117
multidimensional 119
passing to functions 255
populating 121
referencing elements in 119
resizing 118

ArraySet CFML function 121
ArraySort CFML function 129
Assignment, CFscript

statements 245
Attaching MIME files 307
Attributes

checking 194
for custom tags 175
passing values 176, 177

Attributes scope 174
Authentication

checking for 365
example 364
functions 360
using Application.cfm 363

Authorization
checking for 365
functions 360

Automatic read locking 236
AVG SQL function 65

408 Index
B
Backreferences

about 265
in regular expression

searches 142
in replacement strings 265

Bar charts, specifying
appearance 68

Base tags 180
BETWEEN SQL Operator 27
Binary files, saving 334
break, CFScript statement 248
Browsers

cfform considerations 138
displaying e-mail in 309
transferring data to a server 350

Building
drop-down list boxes 166
queries 28
search interfaces 52, 279
slider bar controls 164
text entry boxes 165
tree controls 147

Built-in variables
Client 225
custom tags 185
Server 232
Session 229

C
C++ CFX tags

implementing 402
importing 406

C++ development
environment 401

Caching connections 343
Caller scope

description 174
using 176

Calling
CFX tags 396
CORBA objects 376
custom functions 251
Java objects 378
nested objects 370
object methods 369

Catching security exceptions 361
cfabort tag, and

OnRequestEnd.cfm 216
cfapplet tag

description 137
using 167, 169

cfapplication tag 222
cfassociate tag 181

cfauthenticate tag
and Web security 215
example 363
syntax 359
using 359
using setcookie 359

cfcatch tag 204
cfcollection tag 274
cfcontent tag 341
cfdirectory tag

and queries 34
for file operatons 341

cfelse tag 96
cfelseif tag 96
cfencode utility 189
cferror page 199
cferror tag 215
cfexit tag

and OnRequestEnd.cfm 216
behavior of 186

cffile tag 318
cfflush tag

and HTML headers 57
using 56

cfform controls
browser considerations 138
description 137

cfform tag
passthrough attribute 136
usage notes 138
using with HTML 136

cfftp tag
attributes 344
connection actions 344
using 341

cfgraph tag
basic usage 61
common attributes 67
for bar charts 68
for line graphs 74
for pie charts 71
graphing queries 62
introduced 60

cfgraphdata tag 66
cfgrid tag

browser considerations 138
controlling cell contents 156
editing data in 157
handling failed validaton 144
returning user edits 156
using 153
validating with Javascript 144

cfhttp tag
and queries 34

creating queries 335
Get method 332
Post method 332, 337
using 332

cfhttpparam tag 337
CFID

Cookie 222
managing without cookies 222
Server-side variable 222

cfif tag 52, 96
cfimpersonate tag 362
cfinclude tag

and Application.cfm 216
using 172

cfindex tag
and queries 34
extermal attribute 276
indexing collections 278

cfinput tag
handling failed validaton 144
passthrough attribute 136
validating with Javascript 144

cfinsert tag
creating action pages 103
form considerations 103
inserting data 102

cfldap tag
and queries 34
indexing queries 282

cflocation tag 226
cflock tag

controlling time-outs 235
examples 238
for file access 241
name attribute 235
nesting 237
scope attribute 234
throwOnTimeout attribute 235
time-out attribute 235
using 233

cfloop tag
emulating in custom tags 186
nested 122

cfmail tag
sample uses 304
sending mail as HTML 308

cfmailparam tag 307
CFML

application pages 10
code validation 194
converting data to

JavaScript 349
definition 7
extending 390

Index 409
interaction with CFScript 249
syntax checker 194
syntax errors 195

CFML expressions,in
CFScript 245

CFML functions
ArrayAppend 119
ArrayDeleteAt 118
ArrayInsertAt 119
ArrayNew 119
ArrayPrepend 119
ArraySet 121
ArraySort 129
AtructKeyArray 129
CreateTimeSpan 35, 228
DateFormat 94
DeleteClientVarialbesList 226
DollarFormat 94
for arrays 124
for queries 34
for structures 133
formatting data 49
GetClientVarialbesList 226
GetException 382, 384
HTMLEditFormat 311, 353
IsAuthenticated 358, 360
IsAuthorized 358, 360, 365
IsCustomFunction 253
IsDefined 47, 92, 129
IsStruct 129
JavaCast 382
ListQualify 86, 87
ListSort 129
MonthAsString 121
Rand 58
RandRange 58
REFind 266
REFindNoCase

266
Reverse 15
StructClear 130
StructCopy 130
StructCount 129
StructDelete 130
StructFind 129
StructInsert 127
StructIsEmpty 129
StructKeyExists 129
StructKeyList 129
StructNew 127
StructUpdate 128
URLEncodedFormat 195
using pound signs 14
WriteOutput 244

cfmodule tag 173, 188
cfoutput tag

and pound signs 14
example 12
populating list boxes 82
use with cfquery tag 25
use with component

objects 369
cfparam tag 88, 224

testing and setting variables 88
validating data types 90

cfpop tag
and queries 34
query results 284
query variables 310
receiving e-mail with 309
using 309
using cfindex with 282

cfquery tag
and pound signs 14
creating action pages 105, 110
data sources and 22
populating list boxes 82
syntax 25
using 25
using cfindex with 282

cfqueryparam tag 94
cfrethrow tag 204
CFScript

custom function syntax 250
differences from JavaScript 248
example 244
expressions 245
function statement 250
interaction with CFML 249
language 245
reserved words 248
return statement 251
statements 244
var statement 251

cfsearch properties 281
cfsearch tag 270

external attribute 276
cfselect tag

handling failed validation 144
passthrough attribute 136
populating list boxes 166

cfset tag
and component objects 369
for updating structures 128
using 12

cfslider tag
browser considerations 138
description 137

handling failed validaton 144
validating with Javascript 144

cfstoredproce tag, and queries 34
cftextinput tag

browser considerations 138
handling failed validaton 144
validating with Javascript 144

CFToken
Cooke 222
managing without cookies 222
server-side variable 222

cftree tag
browser considerations 138
description 137
form variables 149
handling failed validaton 144
image names 151
URLs in 152
validating with Javascript 144

cftry tag 208
cfupdate tag

creating action pages 109
using 109

cfwddx tag 345
CFX tags

calling 396
compiling 402
creating in C++ 401
creating in Java 393
debugging in C++ 402
debugging in Java 398
description 390
developing in C++ 401
distributing 405
Java 391
locking 241
locking access to 233, 235
registering 404
sample C++ 401
sample Java 391
tag wizard 401
testing Java 396

CGI
and cfhttp Post method 332
returning results to 340

Character classes 261
Check boxes

errors 47
lists of values 84
multipe 84

Child tags 180
Class loading

Java 395
mechanism 384

410 Index
Class path
configuring 391
Java objects and 368

Class reloading, automatifc 395
Classes, debugging 399
Client cookies 222
Client scope 214
Client state management

clustering 222
cookies for 222
described 221
enabling 223

Client variables
and cflocation tag 226
built-in 225
caching 226
characteristics of 214
configuring 223
creating 224
deleting 226
description 221
exporting from Registry 227
listing 226
setting options for 223
storage 224
storage method 223
using 225

Clustering, client state
management 222

Code
debugging 236
maintaining 172
protecting 233
reusing 172
validating 194

ColdFusion
action pages, extension for 45
application page file

extension 7
application pages, about 6
components of 6
description 4
documentation xviii
editions of 4
error handling 198
error types 197
features and components 5
integrating e-mail with 302
security features 356

ColdFusion Administrator
about 7
creating collectons 273
indexing collections 277
Locking page 236

managing data sources 21
ODBC driver list 21

ColdFusion functions. See CFML
Functions

ColdFusion Markup Language. See
CFML

ColdFusion Server
about 8
configuring 7
description 7
installing 7
overview 8

ColdFusion site, searching 270
ColdFusion Studio

Tag wizard 401
Verity wizard 279

Collections
access to 298
creating 273
creating with

Administrator 273
creating with cfcollection 274
enabling access to 274
indexing 276
maintenance options 298
managing 298
populating 276
populating from a query 282
searching 270

Columns in tables 19
COM

and WDDX 345
connecting to objects 374
description 368
requirements 370
using properties and

methods 375
viewing objects 371

COM/DCOM, getting started 370
Commas, in search

expressions 288
Comments

CFML 16
CFScript 245
HTML 16

Common Object Request Broker
Architecture. See CORBA

Compiling, C++ CFX tags 402
Component Object Model. See

COM
Component objects

invoking 369
overview 368

Concept operators 295

Conditions, in queries 51
Connections, caching FTP 343
Constructors, using alternate 381
continue, CFScript statement 248
Cookie scope, catching errors 57
Cookies

client 222
client state management 221
for storing Client variables 223
managing without 222
sending with cfhttp 337

Copying, server files 326
CORBA

calling objects 376
description 368
getting started 376

CreateTimeSpan CFML
function 35, 228

Creating
action pages 46, 98
action pages to insert data 103
action pages to update data 109
application pages 10
Application.cfm 219
arrays 118
basic graphs 61
client variables 224
collections 273, 274
COM Objects 374
custom CFML tags 174
data grids 153
dynamic form elements 84
error application pages 200
forms with cfform 136
graphs 60
HTML insert forms 102
input forms 97
insert action pages 103, 105
Java CFX tags 393
multidimensional arrays 119
queries from text files 335
queries of queries 34
searchable data sources 273
structures 127
summaries 281
table joins 52
update action pages 109, 110
update forms 106
updateable grids 155

Criteria
for searching 51
multiple search 51, 52

Custom exceptions 210
Custom functions

Index 411
arguments 251
calling 251
defining 250
described 250
error handling 256
evaluating strings 255
examples 253
identifying 253
in Application.cfm 254
passing arrays 255
using with queries 254
variables 252

Custom tags
ancestor 180
attributes 175
base 180
built-in variables 185
calling 173, 185
CFX 390
children 180
creating 174
data access example 183
data accessibility 181
data exchange 181
descendants 180
distributing 405
downloading 174
encoding 189
encrypting 189
example 178
execution modes 185
filename conflicts 188
installing 187
instance data 185
local 187
location of 173
managing 188
naming 174
nesting 180
parent 180
passing attributes 176, 177
passing data 181
restricting access to 188
scope of 172
shared 187
terminating execution 186
using 173, 174
using existing 174

D
Data

accessibility with custom
tags 181

converting to JavaScript
object 349

exchanging across application
servers 347

exchanging with WDDX 345
filtering 51
graphing 62
passing between nested

tags 181
selecting for retrieval 40
transferring from browser to

server 350
Data sources

about 20
adding 22
connecting to 23
LDAP 7
naming 23
native database drivers 7
ODBC 7
OLE-DB 7
specifying dynamically 24
storing Client variables in 223
support for 7
types of 18
understanding 3, 20

Data types
about 13
default conversion 382
resolving ambiguous 382
validating 90

Database exceptions 207
Database Management System. See

DBMS
Databases

basics of 19
controlling access to 233
deleting multiple records 113
deleting one record 112
design 3
elements of 19
inserting data into 103
locking 233
retrieving data from 25
updating 106

datasource attribute 25
DateFormat CFML function 94
DBMS 20
Deadlocks 237
Debug information

for a query 192
outputting 398
per page 192

Debug settings 192

Debugging
C++ CFX tags 402
custom pages and tags 199
full lock checking 236
Java CFX tags 398
Java classes for 399, 400

Declaring
arrays 118
structures and sequences 376

Default values, of variables 89
DELETE SQL statement 26, 112
DeleteClientVariablesList CFML

function 226
Deleting

a database record 112
Client variables 226
data 112
database records 113
e-mail 314
server files 326
structures 130

Delimiters
search expression 288
text file 335

Descendant tags 180
Development environment

C++ 401
Java 391

Directories
indexing 270
information about 329

Directory operations 329
Directory structure,

application 216, 217
Displaying

query results 30
query results, in tables 49
text 12
variables 12

Distributed data 345
Distributing CFX tags 405
do while loop, CFScript 247
DollarFormat function 94
Drop-down list boxes. See List

boxes
Dynamic load path 384
Dynamic SQL 96

See also SQL
Dynamic SQL parameters 96

E
Editing

data in cfgrid 157
tools 10

412 Index
Editions of ColdFusion 4
E-mail

attachments 313
checking for spooled 308
customizing 306
deleting 314
error logging 308
for multiple recipients 306
form-based 304
handling POP 310
headers 310
indexing 270, 284
integrating Coldfusion 302
multiple recipients 305
query-based 304
receiving 309
sending 302
undelivered 308

Embedding
Java applets 167, 169
URLs in a cftree 152

Enabling
access to an existing

collection 274
Session variables 228

Encoding custom tags 189
Encrypting application pages 358
Error handling

ColdFusion 197
custom 215
in custom functions 256

Error messages
Administrator settings 192
generating with cferror 199

Error pages
custom 199
variables 200

Errors
ColdFusion handling of 198
creating application pages 200
custom pages 199
input validation 197, 202
logging 202

Evaluating
file upload results 324
strings in functions 255

Evidence operators 290
Example

adding a pie chart 72
adding an area graph 74
adding character to a bar

graph 69
ancestor data access 183
Application.cfm 220, 364

caching a connection 344
catching security

exceptions 361
CFML Java exception

handling 383
declaring CORBA

structures 377
dynamically linking from a pie

chart 77
exception-throwing class 383
graphing a query of queries 63
Java object 385
locking CFX tags 241
multilevel tree control 150
one-level tree control 150
regular expressions 143
request error page 201
restricting file types 322
setting default values 89
setting file attributes 323
synchronizing file system

access 241
testing for variables 88
user authentication and

authorization 363
using cfauthenticate 359
using cfimpersonate 363
using Java objects 378, 380
using StructInsert 130
using structures 132
validating an e-mail

address 144
validation error page 202
variable locking 238

Exception handling
CIORBA objects 378
example 208
in ColdFusion 204
Java objects 382
strategies 208

Exceptions
custom types 210
database 207
expressions 207
information returned 206
locking 208
missing files 208
naming custom 211
recoverable 205

Exclusive locks
about 234
avoiding deadlocks 237

Execution modes 185
ExecutionMode variable 185

Explicit search query
expressions 286

Exporting Client variable
database 227

Expression exceptions 207
Expressions

CFScript 245
search syntax 286

Extending CFML 390

F
Fields, database 19
File operations

cfftp actions 344
using cffile 318
using cfftp 341

File scope 185
File types, supported for

searching 271
Files

controlling type uploaded 321
copying 326
deleting 326
locking access to 235, 241
moving 326
name conflicts 321
naming 16
on server 318
reading 327
renaming 326
types 322
updating 233
uploading 318, 319
writing 328

Find CFML function 260
Finding

a strucute key 129
component ProgID and

methods 371
similar query results 51
with regular expresions 260

Footers, including 172
for loop, CFScript 246
for-in loop, CFScript 247
Form controls

cfform 137
description 41

Form fields, required 91
Form tag syntax 40
Form variables

considerations 48
in queries 46
naming 45
processing 45

Index 413
referring to 45
scope of 45, 48

Formatting
data items 50
query results 50

Forms
about 40
action pages 45
check boxes 84
considerations for 44
creating with cfform 136
deleting data 112
designing 44
drop-down list boxes 166
dynamically populating 82
HTML 40
inserting data 102
Java applets in 167
preserving data 137
requiring entries 89
slider bars 164
text entry boxes 165
tree controls 147
updating data 106
validating data in 91

FROM SQL clause
description 27
using 26

FTP
actions and attributes 344
chaching connections 343
using cfftp 341

Full lock checking 236
Function variable, definition 251
function, CFScript statement 250
Functions

calling 251
definition 47
example custom 253
for arrays 124
IsAuthenticated 360
IsAuthorized 360
JavaScript, for validation 144
structures 133
using pound signs 14
See also ColdFusion functions,

Custom functions

G
Generated content 187
Get method, cfhttp 332
GetClientVariablesList CFML

function 226

GetException CFML function 382,
384

Graphing
individual data points 65
queries 62
query results 63

Graphs
appearance attributes 67
bar charts 68
line 74
linking from 77
pie chart appearance 71
types 60

Grids
navigating 155
See also cfgrid tag

GROUP BY, SQL clause 27

H
Handling

applet form variables 169
exceptions 204
failed validation 144
POP Mail 310

Headers, including 172
Hidden fields 91
Horizontal bar charts 68
HTML

and ColdFusion 10
knowing 3
using tables 49
using with cfform 136

HTMLEditFormat CFML
function 311, 353

HTTP/URL problems 195

I
if-else, CFScript statements 246
Impersonating, with

cfimpersonate 362
Implementing

C++ CFX tags 402
Dynamic SQL 96
Java CFX tags 393

Importing
C++ CFX tags 406
Java CFX tags 406

IN SQL operator 27
Indexing

cfldap query results 283
database query results 282
directories 270
e-mail 270, 284
external Verity collections 276

methods 277
query results 270
summary of 279
Web sites 270

Indexing collections
about 276
with Administrator 277
with cfindex 278

Infix notation, search string 287
Input validation

cftree 149
error type 197
with cfform Controls 139
with JavaScript 144

INSERT SQL statement 26
Inserting data

description 102
with cfinsert 103
with cfquery 105

Installing Custom Tags 187
Instance data, custom tag 185
International Languages, search

support 272
Invoking

COM methods 375
component objects 369
methods in cfobject 375

IsAuthenticated CFML
function 358, 360

IsAuthorized CFML function 358,
360, 365

IsCustomFunction CFML
function 253

IsDefined CFML function 47, 92,
129

IsStruct CFML function 129

J
Java

and ColdFusion data 381
and WDDX 345
class loading mechanism 384
class reloading 395
customizing and

configuring 392
development enviroment 391
getting started 378
object example 385

Java applets
embedding 167, 169
form variables 169
overriding default values 169
registering 167

Java CFX tags

414 Index
class loading 395
debugging 398, 399
example 397
importing 406
life cycle of 396
writing 393

Java objects
calling 378
considerations 380
exception handling 382

JavaCast CFML function 382
JavaScript

differences from CFScript 248
validating with 144

Joining tables 52

K
Keys, listing structure 129

L
LDAP query results 283
LIKE SQL operator 27, 51
Line graphs, setting

appearance 74
Linking from graphs 77
List boxes

populating 166
populating dynamically 82

Listing
Applicaton variables 231
Client variables 226
Session variables 230

ListQualify CFML function 86, 87
ListSort CFML function 129
Loading, Java CFX classes 395
Local tags 187
Locking

automatic 236
avoiding deadlocks 237
CFX tags 241
exceptions 208
file access 241
scopes 234
with cflock 233

Locks
automatic checking of 236
controlling time-outs 235
exclusive 234
full checking 236
naming 235
read-only 234
scopes and names 234
types 234

Logging errors 202

Looping through structures 132

M
Mail servers, and ColdFusion 302
Managing

client state 221
client state, in clusters 222
client state, without

cookies 222
collections 298
custom tags 188

Mapping, application
framework 216

Matches, pattern 142
method attribute, cfhttp tag 332,

337
Methods, calling 369
Missing files, exceptions 208
Modes of execution 185
Modifiers, searching 297
MonthAsString CFML

function 121
Moving

data across the Web 345
server files 326

Multicharacter regular expressions
for searching 263
for validation 141

Multiple selection lists 86
Multiple tables, searching 52

N
name cfquery attribute 25
Naming

applications 219
variables 179

Naming conventions, for custom
exceptions 211

Navigating grids 155
Nested tags, using Request

scope 174
Nesting

cflock tags 237
cfloops for arrays 122
custom tags 180
object calls 370

NOT SQL operator 27

O
Objects

calling methods 369
calling nested 370
COM 368
Java 368

query 394
Request 393
Response 393
using properties 369

ODBC
configuration problems 195
data sources 7
described 20
UNIX drivers 21
Windows drivers 20

OLE/COM Object Viewer 371
OLE-DB, data sources 7
OnRequestEnd.cfm 216
Open Database Connectivity. See

ODBC
Operators

concept 295
core 296
evidence 290
proximity 291
relational 292
search 290
SQL 27

Optional arguments 251
OR SQL operator 27
ORDER BY SQL clause 27
Outputting

debug information 398
query data 30

Overriding default Java applet
values 169

P
Parameters, dynamic SQL 96
Parent tags 180
Passing

arguments 252
arrays to custom functions 255
custom tag attributes 176, 177
custom Tag data 181

passthrough attribute 136
Pattern matching 51
Performing a query on a query 35
Perl 345
Pie charts, setting appearance 71
POP 7
Populating

arrays from queries 123
arrays with ArraySet 121
arrays with cfloop 121
arrays with nested loops 122
collections 276
grids from queries 154

POSIX character classes 262

Index 415
Post cfhttp method 332, 337
Pound signs, using 14
Precedence rules, search 287
Prefix notation, search strings 287
preservedata cfform attribute 137
Problems, troubleshooting 195
Processing

Application.cfm 216
form variables on action

pages 45
Java CFX requests 393
OnRequestEnd.cfm 216

Protecting data 233
Proximity operators 291
Punctuation, searching 289
Python 345

Q
Queries

as function parameters 254
building 26, 28
building graphically 26
creating from text files 335
graphing 62
grouping output 148
guidelines for creating 29
guidelines for outputting 31
joining tables 52
multiple conditions 51
outputting 30
using form variables 46
using query results in 34
validating 94

Queries of queries
about 34
creating 34
performing 35

Query CFX object 394
Query expressions

explicit search 286
search 285
simple search 285

Query functions 34
Query objects 25, 394
Query parameters, checking 94
Query properties, guidelines

for 33
Query results

about 32
cfpop 284
columns in 32
current row 32
displaying 30
graphing 63

indexing 270, 282
layout 49
LDAP 283
no records 55
records returned 32
returning 55
returning incrementally 56
variables 32

Quotes
for IsDefined CFML

function 48
using 26, 48

R
Rand CFML function 58
RandRange CFML function 58
Reading, a text file 327
Read-only locks 234
Receiving e-mail 309
Records

definition 19
returned 55

Recoverable expressions 205
Referencing array elements 119
REFind CFML function 266
REFindNoCase CFML

function 266
Registering

CFX tags 404
COM objects 371
Java applets 167

Registry
exporting Client variables 227
storing Client variables 223

Regular expressions
anchoring to search string 264
backreferences 142, 265
character classes 261
common uses 267
examples 143, 267
finding repeated words 265
for form validaton 140
for searching and replacing

text 259
multicharacter 263
partial matches 142
replacing with 260
returning matched

subexpressions 266
single-character 140, 261

Relational databases 3
Relational operators 292
Remote Development Services

Security 356

Renaming server files 326
Replace CFML function 260
Replacing using regular

expressions 260
Request object 393, 394
Request scope 174
Requirements for COM 370
Requiring form entries 89
Reserved words, CFScript 248
Reset buttons 42
Resolving

ambiguous data types 382
custom tag file conflicts 188
filename conflicts 321

Resources
COM 368
CORBA 368
regular expressions 143

Response object 393, 394
Results, returning

incrementally 56
Retrieving

binary files 332
e-mail attachments 313
e-mail headers 310
e-mail messages 312
files 341
query data 25
text 332

return CFScript statement 251
Returning

file information 329
query results 55
results incrementally 56
subexpressions 266

Reusing code
cfinclude 172
custom tags 173
techniques for 172

Reverse CFML function 15
Rows in tables 19
Runtime validation 194

S
Sample CFX tags

C++ 401
Java 391

Saving
application pages 11
binary files 334
Web pages 333

Scope
of custom tags 172
of Form variables 48

416 Index
Scopes
and custom functions 252
Application 215, 230
Attributes 174, 176
Caller 174, 176
Client 214, 221, 223
File 185
Form 14, 45
local 14
locking 234
managing locking of 237
Request 174
Server 215, 232
Session 214, 221, 228
types 13
URL 14
Variables 14
Variables, and custom tags 172

Score search operators 296
Search and replace 260
Search criteria

database retrieval 51
example of 98
multiple 52

Search expressions
commas in 288
composing 287
delimiters 288
document fields 294

Search expressions, evidence
operators 290

Search interfaces, building 279
Searching

a ColdFusion Web Site 270
collections 270
creating index summaries 281
criteria for 51
explicit expressions 286
explicit syntax 286
expression syntax 286
external verity collections 276
file types 271
full-text 270
international languages 272
modifiers 297
multiple tables 52
numeric values 84, 86
operators 290
prefix and infix notation 287
punctuation 289
results of 281
special characters 287, 289
special characters as

literals 289

string values 85, 87
SUBSTRING operator 294
wildcards as literals 289
with wildcards 288

Securing
a collection 298
custom tags 188

Security
application security 355
Application.cfm example 364
authenticating users 360
authentication example 363
authorization example 363
authorizing users 360
catching exceptions 361
cfauthenticate tag 360
cfimpersonate Tag 362
encrypting strings 358
implementing 358
IsAuthenticated CFML

function 360
IsAuthorized CFML

function 360
IsAuthorized example 365
overview 357
Web server 215

SELECT SQL statement 26
Selecting an indexing method 277
Selection lists, multiple 86
Sending

e-mail 302, 303
e-mail to multiple

recipients 305
form-based e-mail 304
mail as HTML 308
query-based e-mail 304

Serialization 347
Server scope 215
Server variables 215

built-in 232
using 232

Servers
remote 332, 341
retrieving files from 332
uploading files 319

Session scope 214
Session variables 214, 221, 229

built-in 229
enabling 228
listing 230
using 228

Session, definition of 228
setCookie attribute 359
Setting

application defaults 219
bar chart characteristics 68
Client variable options 223
COM properties 375
file and directory attributes 323
line graph characteristics 74
pie chart characteristics 71
properties 375

Setting up
C++ development

environment 401
Java development

environment 391
Settings, application-level 214
Shared tags 187
Simple query expressions 285
Simple syntax 286
Single quotes, in SQL 26, 87
Single-character regular

expressions 140, 261
Single-threading sessions 237
Slider bar controls 164
SMTP 302
Special characters 140, 287, 289
Specifying

a connection string 23
client variable storage 224
data sources dynamically 24
execution modes 185
tree items in URLs 153

SQL
AVG function 65
DELETE Statement 112
dynamic 96, 99
generating dynamically 45
guidelines 27
INSERT statement 105
LIKE operator 51
non-standard 28
operators 27
single quotes in 26, 87
statement clauses 27
statements 26
SUM function 73
syntax elements 26
text literals in 26
UPDATE statement 106
Use in cfquery 25
WHERE clause 45
writing 26

Standard variables. See Built-in
variables

Statement clauses, SQL 27
Statements

Index 417
CFScript 244, 245
SQL 26

Strings
evaluating in functions 255
limiting size of 264
storing complex data in 353

StructClear CFML function 130
StructCopy CFML function 130
StructCount CFML function 129
StructDelete CFML function 130
StructFind CFML function 129
StructInsert CFML function 127
StructIsEmpty CFML

function 129
StructKeyArray CFML

function 129
StructKeyExists CFML

function 129
StructKeyList CFML function 129
StructNew CFML function 127
StructUpdate CFML function 128
Structured Query Language. See

SQL
Structures

about 125
adding data to 127
copying 130
creating 127
custom tag 177
deleting 130
example 130
finding keys 129
functions 133
getting information on 129
listing keys in 129
looping through 132
notation for 126
passing tag arguments 177
sorting keys 129
updating 128

sub tags
associating with the base

tag 180
definition 180

Submit buttons 42
SUBSTRING Search operator 294
SUM SQL function 73
Summaries, search 281
switch-case,CFScript 247

Syntax
checking 194
errors in CFML 195

expression 286

T
Tables

displaying queries 49
using HTML 49

Tag Wizard, using 401
Tags, context information 206
Testing

a variable’s existence 47
query parameters 94

Text control 41
Text files

column headings 335
creating queries from 335
delimiters 335

Text, displaying 12
throwOnTimeout, cflock

attribute 235
Time zone processing, WDDX 347
time-out attribute, cflock 235
Transferring data, from browser to

server 350
cftree tag

See also Tree controls
Tree controls, structuring 150
Troubleshooting 195

U
UNIX

C++ debuggers 403
permissions 323

Updating
a database with

cfgridupdate 159
a database with cfquery 160
a structure with cfset 128
a structure with

StructUpdate 128
data using forms 106
files 233
values in structures 128

Uploading files 319
Uploads, contolling file type 321
URLEncodedFormat CFML

function 195
URLs, specifying links from

graphs 77
User authentication

cfauthenticate tag 359
cfimpersonate tag 362
example 364
IsAuthenticated CFML

function 360

User edits, returning 156
User-defined functions. See Custom

functions
Users, keeping track of 221

V
Validating

at runtime 194
code 194
data types 90
form attributes 139
form field data types 91
form input 149
JavaScript functions 144
queries 94
user input 91
using regular expressions 140

Validation, error handling 144
var, CFScript statement 251
Variables

about 13
Application 230
Application scope 215, 230
application-level 216
Attributes scopes 174
caching 226
Caller scope 174
CfScript 245
Client scope 214, 221
configuring Client 223
default 88, 89, 219
defining 12
displaying 12, 14
ensuring existence of 88
evaluating 215
Form 14, 45
formatting 50
forms 40
in Custom functions 252
local 14
locking example 238
naming 179
passing 332
processing 40
Request scope 174
scope of 13
scopes for custom pages 174
sending 337
Server 232
Server scope 215
Session scope 214, 221, 228,

229
setting default values 89
testing for existence 47, 88

418 Index
types of 13
URL 14
using pound signs 14
validating 91
See also Scope, Built-in variables

Verbs, SQL 26
Verity

about 270
See also Searching, Search

expressions
Verity wizard 279
Viewing

application pages 11
online documentation xix

W
WDDX

and application-level data 347
and Web Services 346
components 346
converting CFML to

JavaScript 349
exchanging data 347
operation of 348
purpose of 345
storing data in strings 353
time zone processing 347
transferring data 350

Web
accessing with cfhttp 332
application framework 214
overview of distributed

data 345
Web Distributed Data Exchange.

See WDDX
Web pages

dynamic 18
saving 333
static 18

Web root
directory 11
IP address of 11
localhost 11

Web server security 215
Web sites

indexing 270
searching 270

WHERE SQL clause
comparing with 45
description 27

while loop, CFScript 246
Wildcards

in searches 288
in SQL 51

Windows file attributes 323
Windows NT, debugging C++ CFX

tags 402
Wizards

Tag 401
Verity 279

WriteOutput CFML function 244

X
XML, and WDDX 345

	Developing ColdFusion Applications
	Contents
	About This Book
	Intended Audience
	New Features
	Developer Resources
	About ColdFusion Documentation
	Printed and online documentation set
	Viewing online documentation
	Printing ColdFusion documentation

	Getting Answers
	Contacting Macromedia

	Introduction to ColdFusion
	A Quick Web Overview
	Before You Begin
	HTML
	Relational database design and management
	SQL

	What is ColdFusion?
	Editions of ColdFusion

	ColdFusion Features and Components
	About the features
	About the components

	How ColdFusion Server Works

	Writing Your First ColdFusion Application
	The Development Process
	Working with ColdFusion Application Pages
	About applicaton pages
	Creating application pages
	Saving application pages
	Viewing application pages

	Working with Variables
	About variables
	Adding more variables to the application

	Development Considerations

	Querying a Database
	Publishing Dynamic Data
	Understanding Database Basics
	Understanding Data Sources
	About Open Database Connectivity

	Accessing Data Sources
	Adding data sources
	Specifying data sources dynamically

	Retrieving Data
	The cfquery tag
	The cfquery tag syntax

	Writing SQL
	Basic SQL syntax elements
	SQL notes and considerations

	Building Queries
	Query notes and considerations

	Outputting Query Data
	Query output notes and considerations

	Getting Information About Query Results
	Query properties notes and considerations

	Using Query Results in Queries
	Query of query benefits
	Creating queries of queries
	Performing a query on a query

	Retrieving and Formatting Data
	Using Forms to Specify the Data to Retrieve
	form tag syntax
	Form controls
	Form notes and considerations

	Working with Action Pages
	Processing form variables on action pages
	Dynamically generating SQL statements
	Creating action pages
	Testing for a variable's existence
	Form variable notes and considerations

	Working with Queries and Data
	Using HTML tables to display query results
	Formatting individual data items
	Performing pattern matching
	Filtering data based on multiple conditions
	Creating table joins
	Building flexible search interfaces

	Returning Results to the User
	If there are no query results
	Returning results incrementally

	Graphing Data
	Creating a Graph
	Graph types
	Creating a basic graph

	Graphing Data
	Graphing a query
	Graphing individual data points
	Combining a query and data points

	Controlling Graph Appearance
	Common graph characteristics
	Setting bar and horizontal bar chart characteristics
	Setting pie chart characteristics
	Setting line and area graph characteristics

	Linking Dynamically from Graphs

	Making Variables Dynamic
	Dynamically Populating List Boxes
	Creating Dynamic Check Boxes and Multiple-Selection List Boxes
	Check boxes
	Multiple selection lists

	Ensuring that Variables Exist
	Using cfparam to test for variables and set default values
	Requiring users to enter values in form fields

	Validating Data Types
	Using cfparam to validate the data type
	Validating form field data types
	Checking query parameters with cfqueryparam

	Dynamic SQL
	Implementing dynamic SQL

	Updating Your Database
	Inserting Data
	Creating an HTML insert form
	Data entry form notes and considerations
	Creating an action page to insert data

	Updating Data
	Creating an update form
	Creating an action page to update data

	Deleting Data
	Deleting a single record
	Deleting multiple records

	Handling Complex Data with Structures
	About Arrays
	Basic Array Techniques
	Creating an array
	Adding elements to an array
	Referencing elements in dynamic arrays

	Populating Arrays with Data
	Populating an array with ArraySet
	Populating an array with cfloop
	Using nested loops for 2D and 3D arrays
	Populating an array from a query

	Array Functions
	About Structures
	Structure notation

	Creating and Using Structures
	Creating structures
	Adding data elements to structures
	Updating values in structures
	Getting information about structures
	Copying structures
	Deleting structures
	Structure example
	Looping through structures

	Structure Functions

	Building Dynamic Forms
	Creating Forms with the cfform Tag
	Using HTML and cfform
	cfform controls
	Preserving input data with preservedata
	Browser considerations

	Input Validation with cfform Controls
	Validating with regular expressions

	Input Validation with JavaScript
	Handling failed validation
	Example: validating an e-mail address

	Building Tree Controls with cftree
	Grouping output from a query
	cftree form variables
	Input validation

	Structuring Tree Controls
	Image names in a cftree

	Embedding URLs in a cftree
	Specifying the tree item in the URL

	Creating Data Grids with cfgrid
	Populating a grid from a query

	Creating an Updateable Grid
	Navigating and entering data in a grid
	Controlling cell contents
	How user edits are returned
	Editing data in cfgrid
	Updating the database with cfgridupdate
	Updating the database with cfquery

	Building Slider Bar Controls
	Building Text Entry Boxes
	Building Drop-Down List Boxes
	Embedding Java Applets
	Registering a Java applet
	Using cfapplet to embed an applet
	Handling form variables from an applet

	Reusing Code
	Ways to Reuse Code
	Reusing Common Code with cfinclude
	Using Custom Tags
	Using existing custom tags
	Creating custom CFML tags
	Variable scopes and special variables
	Using tag attributes
	Passing values to and from custom tags
	Passing custom tag attributes via CFML structures
	Custom tag example

	Nesting Custom Tags
	Passing Data Between Nested Custom Tags
	What data is accessible?
	Where is data accessible?
	High-level data exchange

	Executing Custom Tags
	Tag instance data
	Modes of execution
	Specifying execution modes
	Terminating tag execution
	Access to generated content

	Installing Custom Tags
	Local tags
	Shared tags

	Managing Custom Tags
	Resolving filename conflicts
	Securing custom tags
	Encoding custom tags

	Preventing and Handling Errors
	Debug Settings in the ColdFusion Administrator
	Generating debug information for an individual page
	Generating debug information for an individual query
	Error messages

	CFML Code Validation
	Runtime validation
	The CFML syntax checker

	Troubleshooting Common Problems
	ODBC data source configuration
	HTTP/URL
	CFML syntax errors

	Error Handling in ColdFusion
	Understanding ColdFusion errors

	Generating Custom Error Messages with cferror
	Creating an error application page

	Logging Errors
	Handling Exceptions in ColdFusion
	Types of recoverable exceptions supported
	Exception information in cfcatch
	Exception handling strategies
	Exception handling example
	Custom Exception Types

	Using the Application Framework
	Understanding the Web Application Framework
	Application-level settings and functions
	Client, Session, Application, and Server scope variables
	Custom error handling
	Web server security integration

	Mapping an Application Framework
	Processing Application.cfm and OnRequestEnd.cfm
	Defining the directory structure

	Creating the Application.cfm File
	Naming the application
	Setting application default variables and constants

	Managing the Client State
	About Client and Session variables
	About client cookies
	Managing client state in a clustered environment
	Managing client state without cookies

	Configuring and Using Client Variables
	Setting up Client variable options
	Using Client variables

	Using Session Variables
	Enabling Session variables
	What is a session?
	Storing session data in Session variables
	Standard Session variables
	Getting a list of Session variables

	Using Application Variables
	Storing application data in Application variables
	Application variable timeouts
	Tips for using Application variables
	Getting a list of Application variables

	Using Server Variables
	Locking Code with cflock
	Using cflock
	How cflock works
	Using administrative lock management
	Nesting locks and avoiding deadlocks

	Examples of cflock

	Extending ColdFusion Pages with CFML Scripting
	About CFScript
	CFScript example
	Supported statements

	The CFScript Language
	Comments
	Variables
	Expressions
	Statements
	Reserved words
	Differences from JavaScript

	Interaction of CFScript with CFML
	Defining and Using Custom Functions
	Defining functions
	Calling functions
	Using arguments and variables
	Identifying custom functions
	Examples of custom functons
	Using custom functions effectively

	Using Regular Expressions in Functions
	About Regular Expressions
	Basic Regular Expression Rules
	Character classes

	Multicharacter Regular Expressions
	Limiting input string size
	Anchoring a regular expression to a string

	Using Backreferences
	Using backreferences in replacement strings

	Returning Matched Subexpressions
	Regular Expression Examples
	Regular expressions in CFML

	Indexing and Searching Data
	Searching a ColdFusion Web Site
	Advantages of using Verity

	Supported File Types
	Support for International Languages
	Creating a Searchable Data Source
	Creating a Collection
	Populating and indexing a collection
	Selecting an indexing method
	Building a search interface

	Indexing Query Results
	Indexing database query results
	Indexing cfldap query results
	Indexing cfpop query results

	Using Query Expressions
	Simple query expressions
	Explicit query expressions
	Expression syntax
	Composing search expressions
	Searching with wildcards
	Searching for special characters as literals
	Operators and modifiers
	Modifiers

	Managing Collections
	Maintenance options
	Securing a collection

	Sending and Receiving E-mail
	Using ColdFusion with Mail Servers
	Sending E-mail Messages
	Sending SMTP mail with cfmail

	Sample Uses of cfmail
	Sending form-based e-mail
	Sending query-based e-mail
	Sending e-mail to multiple recipients

	Customizing E-mail for Multiple Recipients
	Attaching a MIME file

	Advanced Sending Options
	Sending mail as HTML
	Error logging and undelivered messages

	Receiving E-mail Messages
	Using cfpop
	cfpop query variables

	Handling POP Mail
	Retrieving only message headers
	Retrieving an entire message
	Retrieving attachments with messages
	Deleting messages

	Managing Files on the Server
	Using cffile
	Uploading Files
	Resolving conflicting filenames
	Controlling the type of file uploaded

	Setting File and Directory Attributes
	Windows
	UNIX

	Evaluating the Results of a File Upload
	Moving, Renaming, Copying, and Deleting Server Files
	Reading, Writing, and Appending to a Text File
	Reading a text file
	Writing a text file

	Performing Directory Operations
	Returning file information

	Interacting with Remote Servers
	Using cfhttp to Interact with the Web
	Using the cfhttp Get Method
	Creating a Query from a Text File
	Using the cfhttp Post Method
	Performing File Operations with cfftp
	Caching connections across multiple pages
	Connection actions and attributes

	Moving Complex Data Structures Across the Web with WDDX
	An overview of distributed data for the Web
	WDDX and Web Services
	WDDX components
	Working with application-level data
	Data exchange across application servers
	How WDDX works

	Converting CFML Data to a JavaScript Object
	Transferring Data from Browser to Server
	Storing Complex Data in a String

	Application Security
	ColdFusion Security Features
	Remote Development Services (RDS) Security
	Overview of User Security
	Using Advanced Security in Application Pages
	Using the cfauthenticate tag
	Authentication and Authorization Functions
	Using the IsAuthenticated function
	Using the IsAuthorized function

	Catching Security Exceptions
	Using the cfimpersonate Tag
	Example of User Authentication and Authorization
	Authenticating users in Application.cfm
	Checking for authentication and authorization

	Using cfobject to Invoke Component Objects
	Component Object Overview
	About COM
	About CORBA
	About Java objects

	Invoking Component Objects
	Using properties
	Calling methods
	Calling nested objects

	Getting Started with COM/DCOM
	Requirements for COM
	Registering the object
	Finding the component ProgID and methods

	Creating and Using COM Objects
	Connecting to COM objects
	Setting properties and invoking methods

	Getting Started with CORBA
	Calling CORBA Objects
	Declaring structures and sequences
	Exception handling

	Calling Java Objects
	Getting Started with Java
	Java and Cold Fusion Data Type Conversions
	Exception Handling
	The class loading mechanism
	A more complex Java example

	Building Custom CFXAPI Tags
	What Are CFX Tags?
	Before You Begin Developing CFX Tags in Java
	Sample Java CFXs
	Setting up your development environment to develop CFXs in Java
	Customizing and Configuring Java

	Writing a Java CFX
	Processing requests
	Loading Java CFX classes
	Automatic class reloading
	Life cycle of Java CFXs
	Calling the CFX from a ColdFusion page

	ZipBrowser Example
	Approaches to Debugging Java CFXs
	Outputting debug information
	Using the debugging classes

	Developing CFX Tags in C++
	Sample C++ CFXs
	Setting up your C++ development environment
	Using the Tag Wizard to create CFXs in C++
	Compiling C++ CFXs
	Implementing C++ CFX tags
	Debugging C++ CFXs

	Registering CFXs
	Distributing CFX Tags

	Index
	Special
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

